Esempio n. 1
0
    def refine_poses(self,
                     keypoint_thresh=10,
                     score_thresh=0.5,
                     neck_thresh=0.59,
                     margin=0.0):
        W, H = 104.73, 67.74

        for i, basename in enumerate(tqdm(self.frame_basenames)):
            poses = self.poses[basename]

            # remove the poses with few keypoints or they
            keep = []
            for ii in range(len(poses)):
                keypoints = poses[ii]
                valid = (keypoints[:, 2] > 0.).nonzero()[0]
                score = np.sum(keypoints[valid, 2])

                if len(
                        valid
                ) > keypoint_thresh and score > score_thresh and keypoints[
                        1, 2] > neck_thresh:
                    keep.append(ii)

            poses = [poses[ii] for ii in keep]

            root_part = 1
            root_box = []
            for ii in range(len(poses)):
                root_tmp = poses[ii][root_part, :]
                valid_keypoints = (poses[ii][:, 2] > 0).nonzero()
                root_box.append([
                    root_tmp[0] - 10, root_tmp[1] - 10, root_tmp[0] + 10,
                    root_tmp[1] + 10,
                    np.sum(poses[ii][valid_keypoints, 2])
                ])
            root_box = np.array(root_box)

            # Perform Neck NMS
            if len(root_box.shape) == 1:
                root_box = root_box[None, :]
                keep2 = [0]
            else:
                keep2 = nms(root_box.astype(np.float32), 0.1)

            poses = [poses[ii] for ii in keep2 if ii < len(poses)]

            # Remove poses outside of field
            keep3 = []
            cam_mat = self.calib[basename]
            cam = cam_utils.Camera(basename, cam_mat['A'], cam_mat['R'],
                                   cam_mat['T'], self.shape[0], self.shape[1])
            for ii in range(len(poses)):
                kp3 = misc_utils.lift_keypoints_in_3d(cam, poses[ii])
                if (-W / 2. - margin) <= kp3[1, 0] <= (W / 2. + margin) and (
                        -H / 2. - margin) <= kp3[1, 2] <= (H / 2. + margin):
                    keep3.append(ii)

            poses = [poses[ii] for ii in keep3]

            self.poses[basename] = poses
Esempio n. 2
0
fig = plt.figure()
ax = fig.add_subplot(111)


for i in tqdm(range(len(new_tracklets))):

    neck_pos = []
    for j in range(len(new_tracklets[i])):
        frame_index = new_tracklets[i][j].frame_index
        basename = db.frame_basenames[frame_index]

        cam_data = db.calib[basename]
        cam = cam_utils.Camera(basename, cam_data['A'], cam_data['R'], cam_data['T'], db.shape[0], db.shape[1])

        kp_3d = misc_utils.lift_keypoints_in_3d(cam, new_tracklets[i][j].keypoints)
        neck_pos.append(kp_3d[1, :])
    neck_pos = np.array(neck_pos)

    # Smooth trajectory
    smoothed_positions = smooth_trajectory(new_tracklets[i], neck_pos)
    for j in range(len(new_tracklets[i])):
        data_out[new_tracklets[i][j].frame].append({'mesh': new_tracklets[i][j].mesh_name, 'x': smoothed_positions[0, j],
                                                    'y': smoothed_positions[1, j], 'z': smoothed_positions[2, j]})

    ax.plot(smoothed_positions[0, :], smoothed_positions[2, :], 'o')

plt.show()

with open(join(db.path_to_dataset, 'players', 'metadata', 'position.json'), 'w') as outfile:
    json.dump(data_out, outfile)
Esempio n. 3
0
    basename = db.frame_basenames[sel_frame]
    poses = db.poses[basename]
    mask = db.get_instances_from_detectron(sel_frame, is_bool=True)

    cam_mat = db.calib[basename]
    cam = cam_utils.Camera(basename, cam_mat['A'], cam_mat['R'], cam_mat['T'],
                           db.shape[0], db.shape[1])

    skeleton_buffer = seg_utils.get_instance_skeleton_buffer(
        db.shape[0], db.shape[1], poses)

    h, w = img.shape[:2]
    for i in range(len(poses)):
        valid = poses[i][:, 2] > 0

        kp3 = misc_utils.lift_keypoints_in_3d(cam, poses[i][valid, :], pad=0)

        center3d = np.mean(kp3, axis=0)
        # Most of keypoitns are in the upper body so the center of the mass is closer to neck
        center3d[1] -= 0.25

        _, center_depth = cam.project(np.array([center3d]))

        bbox = misc_utils.get_box_from_3d_shpere(cam, center3d)
        x1, y1, x2, y2 = bbox[:4]

        x1 -= margin
        y1 -= margin
        x2 += margin
        y2 += margin
        x1, x2, y1, y2 = max(x1, 0), min(w, x2), max(y1, 0), min(h, y2)