class SET_MLP:
    def __init__(self, dimensions, activations, epsilon=20):
        """
        :param dimensions: (tpl/ list) Dimensions of the neural net. (input, hidden layer, output)
        :param activations: (tpl/ list) Activations functions.

        Example of three hidden layer with
        - 3312 input features
        - 3000 hidden neurons
        - 3000 hidden neurons
        - 3000 hidden neurons
        - 5 output classes


        layers -->    [1,        2,     3,     4,     5]
        ----------------------------------------

        dimensions =  (3312,     3000,  3000,  3000,  5)
        activations = (          Relu,  Relu,  Relu,  Sigmoid)
        """
        self.n_layers = len(dimensions)
        self.loss = None
        self.dropout_rate = 0.  # dropout rate
        self.learning_rate = None
        self.momentum = None
        self.weight_decay = None
        self.epsilon = epsilon  # control the sparsity level as discussed in the paper
        self.zeta = None  # the fraction of the weights removed
        self.dimensions = dimensions

        self.save_filename = ""
        self.input_layer_connections = []
        self.monitor = None

        # Weights and biases are initiated by index. For a one hidden layer net you will have a w[1] and w[2]
        self.w = {}
        self.b = {}
        self.pdw = {}
        self.pdd = {}

        # Activations are also initiated by index. For the example we will have activations[2] and activations[3]
        self.activations = {}
        for i in range(len(dimensions) - 1):
            self.w[i + 1] = create_sparse_weights(
                self.epsilon, dimensions[i],
                dimensions[i + 1])  # create sparse weight matrices
            self.b[i + 1] = np.zeros(dimensions[i + 1], dtype='float32')
            self.activations[i + 2] = activations[i]

    def _feed_forward(self, x, drop=False):
        """
        Execute a forward feed through the network.
        :param x: (array) Batch of input data vectors.
        :return: (tpl) Node outputs and activations per layer. The numbering of the output is equivalent to the layer numbers.
        """
        # w(x) + b
        z = {}

        # activations: f(z)
        a = {
            1: x
        }  # First layer has no activations as input. The input x is the input.
        masks = {}

        for i in range(1, self.n_layers):
            z[i + 1] = a[i] @ self.w[i] + self.b[i]
            a[i + 1] = self.activations[i + 1].activation(z[i + 1])
            if drop:
                if i < self.n_layers - 1:
                    # apply dropout
                    a[i + 1], keep_mask = dropout(a[i + 1], self.dropout_rate)
                    masks[i + 1] = keep_mask

        return z, a, masks

    def _back_prop(self, z, a, masks, y_true):
        """
        The input dicts keys represent the layers of the net.

        a = { 1: x,
              2: f(w1(x) + b1)
              3: f(w2(a2) + b2)
              4: f(w3(a3) + b3)
              5: f(w4(a4) + b4)
              }

        :param z: (dict) w(x) + b
        :param a: (dict) f(z)
        :param y_true: (array) One hot encoded truth vector.
        :return:
        """
        keep_prob = 1.
        if self.dropout_rate > 0:
            keep_prob = np.float32(1. - self.dropout_rate)

        # Determine partial derivative and delta for the output layer.
        # delta output layer
        delta = self.loss.delta(y_true, a[self.n_layers])
        dw = coo_matrix(self.w[self.n_layers - 1], dtype='float32')
        # compute backpropagation updates
        backpropagation_updates_numpy(a[self.n_layers - 1], delta, dw.row,
                                      dw.col, dw.data)

        update_params = {
            self.n_layers - 1: (dw.tocsr(), np.mean(delta, axis=0))
        }

        # In case of three layer net will iterate over i = 2 and i = 1
        # Determine partial derivative and delta for the rest of the layers.
        # Each iteration requires the delta from the previous layer, propagating backwards.
        for i in reversed(range(2, self.n_layers)):
            # dropout for the backpropagation step
            if keep_prob != 1:
                delta = (delta @ self.w[i].transpose()
                         ) * self.activations[i].prime(z[i])
                delta = delta * masks[i]
                delta /= keep_prob
            else:
                delta = (delta @ self.w[i].transpose()
                         ) * self.activations[i].prime(z[i])

            dw = coo_matrix(self.w[i - 1], dtype='float32')

            # compute backpropagation updates
            backpropagation_updates_numpy(a[i - 1], delta, dw.row, dw.col,
                                          dw.data)

            update_params[i - 1] = (dw.tocsr(), np.mean(delta, axis=0))
        for k, v in update_params.items():
            self._update_w_b(k, v[0], v[1])

    def _update_w_b(self, index, dw, delta):
        """
        Update weights and biases.

        :param index: (int) Number of the layer
        :param dw: (array) Partial derivatives
        :param delta: (array) Delta error.
        """

        # perform the update with momentum
        if index not in self.pdw:
            self.pdw[index] = -self.learning_rate * dw
            self.pdd[index] = -self.learning_rate * delta
        else:
            self.pdw[index] = self.momentum * self.pdw[
                index] - self.learning_rate * dw
            self.pdd[index] = self.momentum * self.pdd[
                index] - self.learning_rate * delta

        self.w[index] += self.pdw[index] - self.weight_decay * self.w[index]
        self.b[index] += self.pdd[index] - self.weight_decay * self.b[index]

    def fit(self,
            x,
            y_true,
            x_test,
            y_test,
            loss,
            epochs,
            batch_size,
            learning_rate=1e-3,
            momentum=0.9,
            weight_decay=0.0002,
            zeta=0.3,
            dropoutrate=0.,
            testing=True,
            save_filename="",
            monitor=False):
        """
        :param x: (array) Containing parameters
        :param y_true: (array) Containing one hot encoded labels.
        :return (array) A 2D array of metrics (epochs, 3).
        """
        if not x.shape[0] == y_true.shape[0]:
            raise ValueError("Length of x and y arrays don't match")

        self.monitor = Monitor(
            save_filename=save_filename) if monitor else None

        # Initiate the loss object with the final activation function
        self.loss = loss()
        self.learning_rate = learning_rate
        self.momentum = momentum
        self.weight_decay = weight_decay
        self.zeta = zeta
        self.dropout_rate = dropoutrate
        self.save_filename = save_filename
        self.input_layer_connections.append(self.get_core_input_connections())
        np.savez_compressed(self.save_filename + "_input_connections.npz",
                            inputLayerConnections=self.input_layer_connections)

        maximum_accuracy = 0
        metrics = np.zeros((epochs, 4))

        for i in range(epochs):
            # Shuffle the data
            seed = np.arange(x.shape[0])
            np.random.shuffle(seed)
            x_ = x[seed]
            y_ = y_true[seed]

            if self.monitor:
                self.monitor.start_monitor()

            # training
            t1 = datetime.datetime.now()

            for j in range(x.shape[0] // batch_size):
                k = j * batch_size
                l = (j + 1) * batch_size
                z, a, masks = self._feed_forward(x_[k:l], True)

                self._back_prop(z, a, masks, y_[k:l])

            t2 = datetime.datetime.now()

            if self.monitor:
                self.monitor.stop_monitor()

            print("\nSET-MLP Epoch ", i)
            print("Training time: ", t2 - t1)

            # test model performance on the test data at each epoch
            # this part is useful to understand model performance and can be commented for production settings
            if testing:
                t3 = datetime.datetime.now()
                accuracy_test, activations_test = self.predict(x_test, y_test)
                accuracy_train, activations_train = self.predict(x, y_true)

                t4 = datetime.datetime.now()
                maximum_accuracy = max(maximum_accuracy, accuracy_test)
                loss_test = self.loss.loss(y_test, activations_test)
                loss_train = self.loss.loss(y_true, activations_train)
                metrics[i, 0] = loss_train
                metrics[i, 1] = loss_test
                metrics[i, 2] = accuracy_train
                metrics[i, 3] = accuracy_test

                print(f"Testing time: {t4 - t3}\n; Loss test: {loss_test}; \n"
                      f"Accuracy test: {accuracy_test}; \n"
                      f"Maximum accuracy val: {maximum_accuracy}")

            t5 = datetime.datetime.now()
            if i < epochs - 1:  # do not change connectivity pattern after the last epoch
                # self.weights_evolution_I() # this implementation is more didactic, but slow.
                self.weights_evolution_II(
                )  # this implementation has the same behaviour as the one above, but it is much faster.
            t6 = datetime.datetime.now()
            print("Weights evolution time ", t6 - t5)

            # save performance metrics values in a file
            if self.save_filename != "":
                np.savetxt(self.save_filename + ".txt", metrics)

            if self.save_filename != "" and self.monitor:
                with open(self.save_filename + "_monitor.json", 'w') as file:
                    file.write(
                        json.dumps(self.monitor.get_stats(),
                                   indent=4,
                                   sort_keys=True,
                                   default=str))

        return metrics

    def get_core_input_connections(self):
        values = np.sort(self.w[1].data)
        first_zero_pos = find_first_pos(values, 0)
        last_zero_pos = find_last_pos(values, 0)

        largest_negative = values[int((1 - self.zeta) * first_zero_pos)]
        smallest_positive = values[int(
            min(values.shape[0] - 1, last_zero_pos + self.zeta *
                (values.shape[0] - last_zero_pos)))]

        wlil = self.w[1].tolil()
        wdok = dok_matrix((self.dimensions[0], self.dimensions[1]),
                          dtype="float32")

        # remove the weights closest to zero
        keep_connections = 0
        for ik, (row, data) in enumerate(zip(wlil.rows, wlil.data)):
            for jk, val in zip(row, data):
                if (val < largest_negative) or (val > smallest_positive):
                    wdok[ik, jk] = val
                    keep_connections += 1
        return wdok.tocsr().getnnz(axis=1)

    def weights_evolution_I(self):
        # this represents the core of the SET procedure. It removes the weights closest to zero in each layer and add new random weights
        for i in range(1, self.n_layers - 1):

            values = np.sort(self.w[i].data)
            first_zero_pos = find_first_pos(values, 0)
            last_zero_pos = find_last_pos(values, 0)

            largest_negative = values[int((1 - self.zeta) * first_zero_pos)]
            smallest_positive = values[int(
                min(
                    values.shape[0] - 1, last_zero_pos + self.zeta *
                    (values.shape[0] - last_zero_pos)))]

            wlil = self.w[i].tolil()
            pdwlil = self.pdw[i].tolil()
            wdok = dok_matrix((self.dimensions[i - 1], self.dimensions[i]),
                              dtype="float32")
            pdwdok = dok_matrix((self.dimensions[i - 1], self.dimensions[i]),
                                dtype="float32")

            # remove the weights closest to zero
            keep_connections = 0
            for ik, (row, data) in enumerate(zip(wlil.rows, wlil.data)):
                for jk, val in zip(row, data):
                    if (val < largest_negative) or (val > smallest_positive):
                        wdok[ik, jk] = val
                        pdwdok[ik, jk] = pdwlil[ik, jk]
                        keep_connections += 1
            limit = np.sqrt(6. / float(self.dimensions[i]))

            # add new random connections
            for kk in range(self.w[i].data.shape[0] - keep_connections):
                ik = np.random.randint(0, self.dimensions[i - 1])
                jk = np.random.randint(0, self.dimensions[i])
                while (wdok[ik, jk] != 0):
                    ik = np.random.randint(0, self.dimensions[i - 1])
                    jk = np.random.randint(0, self.dimensions[i])
                wdok[ik, jk] = np.random.uniform(-limit, limit)
                pdwdok[ik, jk] = 0

            self.pdw[i] = pdwdok.tocsr()
            self.w[i] = wdok.tocsr()

    def weights_evolution_II(self):
        # this represents the core of the SET procedure. It removes the weights closest to zero in each layer and add new random weights
        # improved running time using numpy routines - Amarsagar Reddy Ramapuram Matavalam ([email protected])
        for i in range(1, self.n_layers - 1):
            # uncomment line below to stop evolution of dense weights more than 80% non-zeros
            # if self.w[i].count_nonzero() / (self.w[i].get_shape()[0]*self.w[i].get_shape()[1]) < 0.8:
            t_ev_1 = datetime.datetime.now()
            # converting to COO form - Added by Amar
            wcoo = self.w[i].tocoo()
            vals_w = wcoo.data
            rows_w = wcoo.row
            cols_w = wcoo.col

            pdcoo = self.pdw[i].tocoo()
            vals_pd = pdcoo.data
            rows_pd = pdcoo.row
            cols_pd = pdcoo.col
            # print("Number of non zeros in W and PD matrix before evolution in layer",i,[np.size(valsW), np.size(valsPD)])
            values = np.sort(self.w[i].data)
            first_zero_pos = find_first_pos(values, 0)
            last_zero_pos = find_last_pos(values, 0)

            largest_negative = values[int((1 - self.zeta) * first_zero_pos)]
            smallest_positive = values[int(
                min(
                    values.shape[0] - 1, last_zero_pos + self.zeta *
                    (values.shape[0] - last_zero_pos)))]

            #remove the weights (W) closest to zero and modify PD as well
            vals_w_new = vals_w[(vals_w > smallest_positive) |
                                (vals_w < largest_negative)]
            rows_w_new = rows_w[(vals_w > smallest_positive) |
                                (vals_w < largest_negative)]
            cols_w_new = cols_w[(vals_w > smallest_positive) |
                                (vals_w < largest_negative)]

            new_w_row_col_index = np.stack((rows_w_new, cols_w_new), axis=-1)
            old_pd_row_col_index = np.stack((rows_pd, cols_pd), axis=-1)

            new_pd_row_col_index_flag = array_intersect(
                old_pd_row_col_index,
                new_w_row_col_index)  # careful about order

            vals_pd_new = vals_pd[new_pd_row_col_index_flag]
            rows_pd_new = rows_pd[new_pd_row_col_index_flag]
            cols_pd_new = cols_pd[new_pd_row_col_index_flag]

            self.pdw[i] = coo_matrix(
                (vals_pd_new, (rows_pd_new, cols_pd_new)),
                (self.dimensions[i - 1], self.dimensions[i])).tocsr()

            if i == 1:
                self.input_layer_connections.append(
                    coo_matrix(
                        (vals_w_new, (rows_w_new, cols_w_new)),
                        (self.dimensions[i - 1], self.dimensions[i])).getnnz(
                            axis=1))
                np.savez_compressed(
                    self.save_filename + "_input_connections.npz",
                    inputLayerConnections=self.input_layer_connections)

            # add new random connections
            keep_connections = np.size(rows_w_new)
            length_random = vals_w.shape[0] - keep_connections
            limit = np.sqrt(6. / float(self.dimensions[i - 1]))
            random_vals = np.random.uniform(-limit, limit, length_random)
            zero_vals = 0 * random_vals  # explicit zeros

            # adding  (wdok[ik,jk]!=0): condition
            while length_random > 0:
                ik = np.random.randint(0,
                                       self.dimensions[i - 1],
                                       size=length_random,
                                       dtype='int32')
                jk = np.random.randint(0,
                                       self.dimensions[i],
                                       size=length_random,
                                       dtype='int32')

                random_w_row_col_index = np.stack((ik, jk), axis=-1)
                random_w_row_col_index = np.unique(
                    random_w_row_col_index,
                    axis=0)  # removing duplicates in new rows&cols
                oldW_row_col_index = np.stack((rows_w_new, cols_w_new),
                                              axis=-1)

                unique_flag = ~array_intersect(
                    random_w_row_col_index,
                    oldW_row_col_index)  # careful about order & tilda

                ik_new = random_w_row_col_index[unique_flag][:, 0]
                jk_new = random_w_row_col_index[unique_flag][:, 1]
                # be careful - row size and col size needs to be verified
                rows_w_new = np.append(rows_w_new, ik_new)
                cols_w_new = np.append(cols_w_new, jk_new)

                length_random = vals_w.shape[0] - np.size(
                    rows_w_new)  # this will constantly reduce lengthRandom

            # adding all the values along with corresponding row and column indices - Added by Amar
            vals_w_new = np.append(
                vals_w_new,
                random_vals)  # be careful - we can add to an existing link ?
            # vals_pd_new = np.append(vals_pd_new, zero_vals) # be careful - adding explicit zeros - any reason??
            if vals_w_new.shape[0] != rows_w_new.shape[0]:
                print("not good")
            self.w[i] = coo_matrix(
                (vals_w_new, (rows_w_new, cols_w_new)),
                (self.dimensions[i - 1], self.dimensions[i])).tocsr()

            # print("Number of non zeros in W and PD matrix after evolution in layer",i,[(self.w[i].data.shape[0]), (self.pdw[i].data.shape[0])])

            t_ev_2 = datetime.datetime.now()
            print("Weights evolution time for layer", i, "is", t_ev_2 - t_ev_1)

    def predict(self, x_test, y_test, batch_size=100):
        """
        :param x_test: (array) Test input
        :param y_test: (array) Correct test output
        :param batch_size:
        :return: (flt) Classification accuracy
        :return: (array) A 2D array of shape (n_cases, n_classes).
        """
        activations = np.zeros((y_test.shape[0], y_test.shape[1]))
        for j in range(x_test.shape[0] // batch_size):
            k = j * batch_size
            l = (j + 1) * batch_size
            _, a_test, _ = self._feed_forward(x_test[k:l], drop=False)
            activations[k:l] = a_test[self.n_layers]
        accuracy = compute_accuracy(activations, y_test)
        return accuracy, activations
Esempio n. 2
0
class Dense_MLP:
    def __init__(self, dimensions, activations):
        """
        :param dimensions: (tpl/ list) Dimensions of the neural net. (input, hidden layer, output)
        :param activations: (tpl/ list) Activations functions.

        Example of three hidden layer with
        - 3312 input features
        - 3000 hidden neurons
        - 3000 hidden neurons
        - 3000 hidden neurons
        - 5 output classes


        layers -->    [1,        2,     3,     4,     5]
        ----------------------------------------

        dimensions =  (3312,     3000,  3000,  3000,  5)
        activations = (          Relu,  Relu,  Relu,  Sigmoid)
        """
        self.n_layers = len(dimensions)
        self.loss = None
        self.learning_rate = None
        self.momentum = None
        self.weight_decay = None
        self.dropout_rate = 0.  # dropout rate
        self.dimensions = dimensions

        self.save_filename = ""
        self.monitor = None

        # Weights and biases are initiated by index. For a one hidden layer net you will have a w[1] and w[2]
        self.w = {}
        self.b = {}
        self.pdw = {}
        self.pdd = {}

        # Activations are also initiated by index. For the example we will have activations[2] and activations[3]
        self.activations = {}
        for i in range(len(dimensions) - 1):
            # He uniform initialization
            limit = np.sqrt(6. / float(dimensions[i]))
            self.w[i + 1] = np.random.uniform(
                -limit, limit, (dimensions[i], dimensions[i + 1]))
            self.b[i + 1] = np.zeros(dimensions[i + 1])
            self.activations[i + 2] = activations[i]

    def _feed_forward(self, x, drop=False):
        """
        Execute a forward feed through the network.
        :param x: (array) Batch of input data vectors.
        :return: (tpl) Node outputs and activations per layer. The numbering of the output is equivalent to the layer numbers.
        """
        # w(x) + b
        z = {}

        # activations: f(z)
        a = {
            1: x
        }  # First layer has no activations as input. The input x is the input.
        masks = {}

        for i in range(1, self.n_layers):
            z[i + 1] = a[i] @ self.w[i] + self.b[i]
            a[i + 1] = self.activations[i + 1].activation(z[i + 1])
            if drop:
                if i < self.n_layers - 1:
                    # apply dropout
                    a[i + 1], keep_mask = dropout(a[i + 1], self.dropout_rate)
                    masks[i + 1] = keep_mask

        return z, a, masks

    def _back_prop(self, z, a, masks, y_true):
        """
        The input dicts keys represent the layers of the net.

        a = { 1: x,
              2: f(w1(x) + b1)
              3: f(w2(a2) + b2)
              4: f(w3(a3) + b3)
              5: f(w4(a4) + b4)
              }

        :param z: (dict) w(x) + b
        :param a: (dict) f(z)
        :param y_true: (array) One hot encoded truth vector.
        :return:
        """
        keep_prob = 1.
        if self.dropout_rate > 0:
            keep_prob = np.float32(1. - self.dropout_rate)

        # Determine partial derivative and delta for the output layer.
        # delta output layer
        delta = self.loss.delta(y_true, a[self.n_layers])
        dw = np.dot(a[self.n_layers - 1].T, delta)

        update_params = {self.n_layers - 1: (dw, np.mean(delta, axis=0))}

        # In case of three layer net will iterate over i = 2 and i = 1
        # Determine partial derivative and delta for the rest of the layers.
        # Each iteration requires the delta from the previous layer, propagating backwards.
        for i in reversed(range(2, self.n_layers)):
            # dropout for the backpropagation step
            if keep_prob != 1:
                delta = (delta @ self.w[i].transpose()
                         ) * self.activations[i].prime(z[i])
                delta = delta * masks[i]
                delta /= keep_prob
            else:
                delta = (delta @ self.w[i].transpose()
                         ) * self.activations[i].prime(z[i])

            dw = np.dot(a[i - 1].T, delta)

            update_params[i - 1] = (dw, np.mean(delta, axis=0))
        for k, v in update_params.items():
            self._update_w_b(k, v[0], v[1])

    def _update_w_b(self, index, dw, delta):
        """
        Update weights and biases.

        :param index: (int) Number of the layer
        :param dw: (array) Partial derivatives
        :param delta: (array) Delta error.
        """

        # perform the update with momentum
        if index not in self.pdw:
            self.pdw[index] = -self.learning_rate * dw
            self.pdd[index] = -self.learning_rate * delta
        else:
            self.pdw[index] = self.momentum * self.pdw[
                index] - self.learning_rate * dw
            self.pdd[index] = self.momentum * self.pdd[
                index] - self.learning_rate * delta

        self.w[index] += self.pdw[index] - self.weight_decay * self.w[index]
        self.b[index] += self.pdd[index] - self.weight_decay * self.b[index]

    def fit(self,
            x,
            y_true,
            x_test,
            y_test,
            loss,
            epochs,
            batch_size,
            learning_rate=1e-3,
            momentum=0.9,
            weight_decay=0.0002,
            dropoutrate=0.,
            testing=True,
            save_filename="",
            monitor=False):
        """
        :param x: (array) Containing parameters
        :param y_true: (array) Containing one hot encoded labels.
        :return (array) A 2D array of metrics (epochs, 3).
        """
        if not x.shape[0] == y_true.shape[0]:
            raise ValueError("Length of x and y arrays don't match")

        self.monitor = Monitor(
            save_filename=save_filename) if monitor else None

        # Initiate the loss object with the final activation function
        self.loss = loss()
        self.learning_rate = learning_rate
        self.momentum = momentum
        self.weight_decay = weight_decay
        self.dropout_rate = dropoutrate
        self.save_filename = save_filename

        maximum_accuracy = 0

        metrics = np.zeros((epochs, 4))

        for i in range(epochs):
            # Shuffle the data
            seed = np.arange(x.shape[0])
            np.random.shuffle(seed)
            x_ = x[seed]
            y_ = y_true[seed]

            if self.monitor:
                self.monitor.start_monitor()

            # training
            t1 = datetime.datetime.now()

            for j in range(x.shape[0] // batch_size):
                k = j * batch_size
                l = (j + 1) * batch_size
                z, a, masks = self._feed_forward(x_[k:l], True)

                self._back_prop(z, a, masks, y_[k:l])

            t2 = datetime.datetime.now()

            if self.monitor:
                self.monitor.stop_monitor()

            print("\nDense-MLP Epoch ", i)
            print("Training time: ", t2 - t1)

            # test model performance on the test data at each epoch
            # this part is useful to understand model performance and can be commented for production settings
            if (testing):
                t3 = datetime.datetime.now()
                accuracy_test, activations_test = self.predict(
                    x_test, y_test, batch_size)
                accuracy_train, activations_train = self.predict(
                    x, y_true, batch_size)
                t4 = datetime.datetime.now()
                maximum_accuracy = max(maximum_accuracy, accuracy_test)
                loss_test = self.loss.loss(y_test, activations_test)
                loss_train = self.loss.loss(y_true, activations_train)
                metrics[i, 0] = loss_train
                metrics[i, 1] = loss_test
                metrics[i, 2] = accuracy_train
                metrics[i, 3] = accuracy_test

                print(f"Testing time: {t4 - t3}\n; Loss test: {loss_test}; \n"
                      f"Accuracy test: {accuracy_test}; \n"
                      f"Maximum accuracy val: {maximum_accuracy}")

            # save performance metrics values in a file
            if save_filename != "":
                np.savetxt(save_filename + ".txt", metrics)

            if self.save_filename != "" and self.monitor:
                with open(self.save_filename + "_monitor.json", 'w') as file:
                    file.write(
                        json.dumps(self.monitor.get_stats(),
                                   indent=4,
                                   sort_keys=True,
                                   default=str))

        return metrics

    def predict(self, x_test, y_test, batch_size=100):
        """
        :param x_test: (array) Test input
        :param y_test: (array) Correct test output
        :param batch_size:
        :return: (flt) Classification accuracy
        :return: (array) A 2D array of shape (n_cases, n_classes).
        """
        activations = np.zeros((y_test.shape[0], y_test.shape[1]))
        for j in range(x_test.shape[0] // batch_size):
            k = j * batch_size
            l = (j + 1) * batch_size
            _, a_test, _ = self._feed_forward(x_test[k:l], drop=False)
            activations[k:l] = a_test[self.n_layers]
        accuracy = compute_accuracy(activations, y_test)
        return accuracy, activations