Esempio n. 1
0
def isTruncPrime(n):
    divisor = 1
    # Check first digit is prime
    while True:
        trunc = n // divisor
        if trunc <= 0: break
        if trunc == 1 or not isPrime(trunc): return False
        divisor *= 10

    while (n % divisor) > 0:
        trunc = n % divisor
        if trunc == 1 or not isPrime(n % divisor): return False
        divisor /= 10

    return True
Esempio n. 2
0
def hasCriteria(n):
    limit = int(sqrt(n // 2))
    for dSq in [2 * i**2 for i in xrange(limit, 0, -1)]:
        diff = n - dSq
        if diff == 1 or isPrime(diff):
            return True

    return False        
Esempio n. 3
0
def challenge041():
    # loop through number of digits
    highest = 0
    for n in [4, 7]:
        chars = string.join([str(c) for c in xrange(1, n + 1)], "")
        for potential in [int(p) for p in permutate(chars) if isPrime(int(p))]:
            if potential > highest: highest = potential
        
    return highest
Esempio n. 4
0
def challenge046():
    n = 3
    while True:

        # Find doubled squares lower than n
        if not hasCriteria(n):
            return n

        n += 2
        while n == 1 or isPrime(n): n += 2
Esempio n. 5
0
def challenge027():

    limit = 999

    aMax = 0
    bMax = 0

    maximum = 1
    bS = list(sievedPrimes(limit + 1))
    for b in bS:
        for a in xrange(-b, limit + 1):
            n = 1
            while True:
                f = n * (n + a) + b
                if not isPrime(f): break
                n += 1

            if n > maximum:
                maximum = n
                aMax = a
                bMax = b
 
    return aMax * bMax