Esempio n. 1
0
 def pre_train(self):
     embedding_optim_cfg = OptimConfig('Adam', lr=1e-2)
     self.embedding_optim = embedding_optim_cfg.get(
         self.gen.embedding.parameters())
     embedding_loss_cfg = LossConfig('MSE')
     self.embedding_loss = embedding_loss_cfg.get()
     self.gen_optim = self.goptim_cfg.get(
         filter(lambda x: type(x) != SampleMatrix, self.gen.parameters()))
Esempio n. 2
0
    def pre_train(self):
        embedding_optim_cfg = OptimConfig('Adam', lr=1e-3)
        self.embedding_optim = embedding_optim_cfg.get(
            self.gen.embedding.parameters())
        embedding_loss_cfg = LossConfig('MSE')
        self.embedding_loss = embedding_loss_cfg.get()
        self.gen_optim = goptim_cfg.get(
            filter(lambda x: type(x) != SampleMatrix, self.gen.parameters()))

        logger.create_scalar('js')
        logger.create_scalar('coverage')
        logger.create_scalar('coverage_HQ')
        logger.create_scalar('confidence')
        logger.create_scalar('ratio')
Esempio n. 3
0
    LATENT_DIM = 100
    IMAGE_SIZE = 64
    DATASET_LEN = 20000
    PRELOAD_LEN = 20000
    EPOCHS = 50000
    device = 'cuda'
    gloss_cfg = LossConfig('BCE')
    dloss_cfg = LossConfig('BCE')

    sampler_cfg = SamplerConfig(
        name='Onehot',
        out_shape=PRELOAD_LEN,
        latent_dim=LATENT_DIM,
        random_sampling=False
    )
    goptim_cfg = OptimConfig('Adam', lr=0.0002)
    doptim_cfg = OptimConfig('Adam', lr=0.0002)

    dataset_cfg = DatasetConfig('CelebA', dataset_len=DATASET_LEN, image_size=IMAGE_SIZE, preload_len=PRELOAD_LEN)
    loader_cfg = LoaderConfig('naive', batch_size=128, shuffle=True)

    gen_cfg = ModelConfig(
        'EDCG', input_size=LATENT_DIM,
        hidden_size=128, output_size=3,
        data_num=PRELOAD_LEN, out_64=IMAGE_SIZE == 64
    )
    dis_cfg = ModelConfig('DCD', input_size=3, hidden_size=64, output_size=1, out_64=IMAGE_SIZE == 64)

    gan_cfg = GanConfig(
        name='CelebAGAN', gen_cfg=gen_cfg, dis_cfg=dis_cfg,
        gen_step=1, dis_step=1, gan_epoch=EPOCHS, loader_cfg=loader_cfg,
Esempio n. 4
0
if __name__ == '__main__':
    MODE = 10
    LATENT_DIM = 100
    IMAGE_SIZE = 32
    DATASET_LEN = 20000
    EPOCHS = 30000
    device = 'cuda'
    gloss_cfg = LossConfig('BCE')
    dloss_cfg = LossConfig('BCE')

    sampler_cfg = SamplerConfig(
        name='Onehot',
        out_shape=DATASET_LEN,
        latent_dim=LATENT_DIM
    )
    goptim_cfg = OptimConfig('Adam', lr=1e-3)
    doptim_cfg = OptimConfig('Adam', lr=1e-3)

    dataset_cfg = DatasetConfig('MNIST', train=True, stack=False, along_width=False, size=32)
    loader_cfg = LoaderConfig('naive', batch_size=128, shuffle=True)

    gen_cfg = ModelConfig('EDCG', input_size=LATENT_DIM, hidden_size=128, output_size=1, data_num=DATASET_LEN)
    dis_cfg = ModelConfig('DCD', input_size=1, hidden_size=128, output_size=1)

    train_data_cfg = DatasetConfig('MNIST', stack=False, train=True, along_width=False)
    test_data_cfg = DatasetConfig('MNIST', stack=False, train=False, along_width=False)

    train_loader = LoaderConfig('naive', batch_size=128, shuffle=True)
    test_loader = LoaderConfig('naive', batch_size=128, shuffle=True)

    util_cfg = UtilityModelConfig('NaiveClassifier', False, '/home/bourgan/gan_dev/checkpoints/mnist_naive.pth.tar',
Esempio n. 5
0
    GAN_EPOCHS = 50000
    DECREASE_LR_EPOCHS = 25000

    IMG_SIZE = 256
    BATCH_SIZE = 1
    label_len = int(args.label_len)

    EXP_NAME = 'refocus_final_' + str(label_len)
    # logger = SummaryWriter('./log/' + EXP_NAME)

    LR = 2e-4

    gloss_cfg = LossConfig('MSE')
    dloss_cfg = LossConfig('MSE')

    goptim_cfg = OptimConfig('Adam', lr=LR, beta=(0.5, 0.999))
    doptim_cfg = OptimConfig('Adam', lr=LR, beta=(0.5, 0.999))

    dataset_cfg = DatasetConfig('FlowerFull',
                                size=IMG_SIZE,
                                num=label_len,
                                train=False)
    loader_cfg = LoaderConfig('naive', batch_size=1, shuffle=False)

    # gen_cfg = ModelConfig('ResNetGen', input_nc=3, output_nc=3, ngf=64, n_blocks=6)
    gen_cfg = ModelConfig('UNetGen',
                          input_nc=3,
                          output_nc=3,
                          num_downs=6,
                          ngf=64,
                          use_resizeconv=True,
Esempio n. 6
0
            os.path.join(logger.img_dir,
                         'sampler_modes_{0:05d}.jpg'.format(postfix)))
        plt.close()


if __name__ == '__main__':
    dataset_len = 2000
    mode = 10
    latent_dim = 10

    device = 'cuda'
    gloss_cfg = LossConfig('BCE')
    dloss_cfg = LossConfig('BCE')

    sampler_loss_cfg = LossConfig('MSE')
    sampler_optim_cfg = OptimConfig('Adam', lr=0.001)
    sampler_cfg = SamplerConfig(
        name='Learning',
        out_shape=latent_dim,
        data_num=dataset_len,
        batch_size=2000,
        epoch=50,
        alpha=0,
        loss_cfg=sampler_loss_cfg,
        optim_cfg=sampler_optim_cfg,
    )

    goptim_cfg = OptimConfig('Adam', lr=1e-3)
    doptim_cfg = OptimConfig('Adam', lr=1e-3)

    # dataset_cfg = DatasetConfig('Spiral', mode=mode, sig=1, num_per_mode=dataset_len // mode)