Esempio n. 1
0
        description='running experiments on multimodal datasets.')
    parser.add_argument('-config',
                        action='store',
                        dest='config_file',
                        help='please enter configuration file.',
                        default='config/run.ini')
    args = parser.parse_args()
    params = Params()
    params.parse_config(args.config_file)
    params.config_file = args.config_file
    mode = 'run'
    if 'mode' in params.__dict__:
        mode = params.mode
    set_seed(params)

    params.device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    if mode == 'run':
        results = []
        reader = setup(params)
        reader.read(params)
        print(params.output_dim_emo)
        params.reader = reader
        if params.train_type == "joint":
            emo, act = run(params)
            save_performance(params, emo, "joint_emotion")
            save_performance(params, act, "joint_act")
        else:
            performance_dict = run(params)
            save_performance(params, performance_dict, params.train_type)
Esempio n. 2
0
    params = Params()
    params.config_file = args_dict['config_file']
    params.__post_init__()
    params._set_with_dict(args_dict)
    params.ransac_iou_threshold = args_dict['ransac_iou_threshold']

    # Set the device
    dev_num = params.gpu_num
    os.environ["CUDA_VISIBLE_DEVICES"] = dev_num
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    device = torch.device(f"cuda" if torch.cuda.is_available() else "cpu")
    logging.info(f"Using {device} as computation device")
    if device == f"cuda":
        torch.cuda.set_device()
    logging.info(f"Using {device} as computation device")
    params.device = device
    params.logger = logging

    try:
        exper_path = os.path.join(params.exper_dir, params.name)
        os.makedirs(exper_path, exist_ok=True)
        with open(os.path.join(exper_path, 'config.json'), 'w') as file:
            file.write(json.dumps(params.as_dict()))
        if params.is_real_data:
            unet = UNetDynamic.load(params)
            unet = nn.DataParallel(unet).to(device)
            logging.info(unet)
            logging.info(
                f"Loaded UNet Model from {params.model_cpt}- Starting training"
            )
            pred_evimo(unet, params, device)