Esempio n. 1
0
def load_scenes():
    try:
        df = pd.read_pickle(data_dir(['scenes', 'origin', 'scenes.pkl']))
    except:
        df = pd.read_csv(data_dir(['scenes', 'origin', 'scenes.csv']))
        df['Polygon'] = df['Polygon'].apply(lambda s: eval(s))
        df.to_pickle(data_dir(['scenes', 'origin', 'scenes.pkl']))
    return df
Esempio n. 2
0
def main():
    df = load_scenes()
    df = df[df['Polygon'].map(is_interested)]

    filepath = lambda s: data_dir(['scenes', 'archives', '{}.csv'.format(s)])
    df.to_csv(filepath('total'), index=None)

    df = df.sample(frac=1)  # important, to shuffle the data
    for i in [1000, 1500, 2000, 2500, 5000, 10000, 15000, 20000, 50000, 75000, 100000]:
        if not os.path.isfile(filepath(str(i))):
            df.head(i).to_csv(filepath(str(i)), index=None)
        else:
            print(i, 'existed')
Esempio n. 3
0
def visualize(vinfo, tag):
    roi = vinfo['roi']
    selected = []
    unselected = []
    sorted_vinfo = sorted(vinfo['frames'].items(), key=lambda kv: float(kv[0]))
    frame_no = 0
    frames = []
    for timestamp, frame in sorted_vinfo:
        selected.append(frame['selected'])
        unselected = frame['unselected'] or []
        frames.append(draw_frame(roi, selected, unselected))
        frame_no += 1
        print(frame_no, 'frame')
    writeGif(data_dir(['visualize', '{}.gif'.format(tag)]),
             frames,
             duration=0.7,
             dither=0)
Esempio n. 4
0
def main():
    MIN_PRODUCT_AREA = 0.011
    small = [2, 4, 6, 8, 10, 12, 14, 16]
    median = [20, 40, 60, 80, 100]
    large = []
    for ratio in small + median + large:
        path = data_dir(['rois', 'rect(x)_{}.csv'.format(ratio)])
        size = ratio * MIN_PRODUCT_AREA
        if not os.path.isfile(path):
            rects = [[list(point) for point in rect]
                     for rect in gen_axis_aligned_rectangle(1000, size)]
            # fig, ax = plt.subplots()
            # plot_polygons(ax, rects)
            # plt.show()
            df = pd.DataFrame([rects]).transpose()
            df.columns = ['Polygon']
            df.to_csv(path, index=None)
        else:
            print(path, 'exists!')
Esempio n. 5
0
import numpy as np
import pandas as pd
import json
from utils.path import data_dir, fig_dir
import matplotlib.pyplot as plt
import matplotlib
import os
import re

vinfo_path = data_dir(['visualize', 'bnb'])
fig_path = fig_dir(['bnb_visual'])

matplotlib.rcParams.update({'font.size': 18})

d = {}

for dirpath, dirnames, filenames in os.walk(vinfo_path):
    for filename in filenames:
        btype, s = re.match("(\[.+\])(.+)", filename).groups()
        roi_ratio = s.strip().split('-')[2]
        if roi_ratio not in d:
            d[roi_ratio] = {}
        reports = json.load(open(os.path.join(dirpath, filename), 'r'))
        if len(reports) == 1:  # old version
            reports = reports[0].items()
        else:  # new version
            _ = {}
            for k in reports[0].keys():
                _[k] = [report[k] for report in reports]
            reports = _.items()
        for k, v in reports:
Esempio n. 6
0
File: run.py Progetto: enhuiz/cgsc
def query_dir(l):
    return data_dir(['experiment', 'results', 'query'] + l)
Esempio n. 7
0
def load_vinfo(n):
    discrete = json.load(
        open(data_dir(['visualize', 'vinfo', 'd{}_vinfo.json'.format(n)])))
    continuous = json.load(
        open(data_dir(['visualize', 'vinfo', 'c{}_vinfo.json'.format(n)])))
    return discrete, continuous
Esempio n. 8
0
def main():
    summary = json.load(open(data_dir(['experiment', 'results', 'summary.json']), 'r'))
    for sub_summary in summary:
        plot_summary(next(iter(sub_summary['variable'].keys())), sub_summary['reports'])
Esempio n. 9
0
import json
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from utils.path import data_dir

deltas = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5]
n_scenes = []

for i in [0.01, 0.02, 0.05, 0.1, 0.2, 0.5]:
    file_path = data_dir(
        ['experiment', 'results', 'query', '0.01-50-{}-15000.json'.format(i)])
    reports = json.load(open(file_path, 'r'))
    n_scenes.append(
        np.mean([len(report['possible_scenes']) for report in reports]))

df = pd.DataFrame([deltas, n_scenes]).transpose().sort_values(0)
df.columns = ['roi_ratio', 'number_of_scenes']
df.plot(x='roi_ratio', y='number_of_scenes', marker='x')

plt.savefig('n_scenes')