Esempio n. 1
0
def main(cfg):
    '''Main function to compute matches.

    Parameters
    ----------
    cfg: Namespace
        Configurations for running this part of the code.

    '''

    if os.path.exists(get_match_file(cfg)):
        print(' -- already exists, skipping match computation')
        return

    # Get data directory
    data_dir = get_data_path(cfg)

    # Load pre-computed pairs with the new visibility criteria
    print('Reading list of all possible pairs')
    pairs = get_pairs_per_threshold(data_dir)['0.0']
    print('{} pre-computed pairs'.format(len(pairs)))

    # Load descriptors
    descriptors_dict = load_h5(get_desc_file(cfg))
    keypoints_dict = load_h5(get_kp_file(cfg))

    # Feature Matching
    print('Computing matches')
    num_cores = cfg.num_opencv_threads if cfg.num_opencv_threads > 0 else int(
        len(os.sched_getaffinity(0)) * 0.9)
    if WITH_FAISS:
        num_cores = min(4, num_cores)
    result = Parallel(n_jobs=num_cores)(
        delayed(compute_matches)(np.asarray(descriptors_dict[pair.split(
            '-')[0]]), np.asarray(descriptors_dict[pair.split(
                '-')[1]]), cfg, np.asarray(keypoints_dict[pair.split(
                    '-')[0]]), np.asarray(keypoints_dict[pair.split('-')[1]]))
        for pair in tqdm(pairs))

    # Make match dictionary
    matches_dict = {}
    timings_list = []
    for i, pair in enumerate(pairs):
        matches_dict[pair] = result[i][0]
        timings_list.append(result[i][1])

    # Check match directory
    if not os.path.exists(get_match_path(cfg)):
        os.makedirs(get_match_path(cfg))

    # Finally save packed matches
    save_h5(matches_dict, get_match_file(cfg))

    # Save computational cost
    save_h5({'cost': np.mean(timings_list)}, get_match_cost_file(cfg))
    print('Matching cost (averaged over image pairs): {:0.2f} sec'.format(
        np.mean(timings_list)))
Esempio n. 2
0
def save_match_inlier(sfm_cfg, key_list, mask_dict):
    match_dict = load_h5(get_match_file(sfm_cfg))

    if len(match_dict) != len(mask_dict):
        raise RuntimeError('Number of pairs from CNe output is different '
                           'from original data!')

    for key, match_mask in mask_dict.items():
        mask_index = np.where(match_mask)
        match_idx_pairs_inlier = match_dict[key_list[key]][:, mask_index]
        match_dict[key_list[key]] = np.squeeze(match_idx_pairs_inlier)

    save_h5(match_dict, get_filter_match_file(sfm_cfg))
Esempio n. 3
0
def main(cfg):
    '''Visualization of stereo keypoints and matches.

    Parameters
    ----------
    cfg: Namespace
        Configurations for running this part of the code.

    '''

    # Files should not be named to prevent (easy) abuse
    # Instead we use 0, ..., cfg.num_viz_stereo_pairs
    viz_folder_hq, viz_folder_lq = get_stereo_viz_folder(cfg)

    print(' -- Visualizations, stereo: "{}/{}"'.format(cfg.dataset, cfg.scene))
    t_start = time()

    # Load deprecated images list
    deprecated_images_all = load_json(cfg.json_deprecated_images)
    if cfg.dataset in deprecated_images_all and cfg.scene in deprecated_images_all[
            cfg.dataset]:
        deprecated_images = deprecated_images_all[cfg.dataset][cfg.scene]
    else:
        deprecated_images = []

    # Load keypoints, matches and errors
    keypoints_dict = load_h5_valid_image(get_kp_file(cfg), deprecated_images)
    matches_dict = load_h5_valid_image(get_match_file(cfg), deprecated_images)
    ransac_inl_dict = load_h5_valid_image(get_geom_inl_file(cfg),
                                          deprecated_images)

    # Hacky: We need to recompute the errors, loading only for the keys
    data_dir = get_data_path(cfg)
    pairs_all = get_pairs_per_threshold(data_dir)['0.1']
    pairs = []
    for pair in pairs_all:
        if all([key not in deprecated_images for key in pair.split('-')]):
            pairs += [pair]

    # Create results folder if it does not exist
    if not os.path.exists(viz_folder_hq):
        os.makedirs(viz_folder_hq)
    if not os.path.exists(viz_folder_lq):
        os.makedirs(viz_folder_lq)

    # Sort alphabetically and pick different images
    sorted_keys = sorted(pairs)
    picked = []
    pairs = []
    for pair in sorted_keys:
        fn1, fn2 = pair.split('-')
        if fn1 not in picked and fn2 not in picked:
            picked += [fn1, fn2]
            pairs += [pair]
        if len(pairs) == cfg.num_viz_stereo_pairs:
            break

    # Load depth maps
    depth = {}
    if cfg.dataset != 'googleurban':
        for pair in pairs:
            files = pair.split('-')
            for f in files:
                if f not in depth:
                    depth[f] = load_depth(
                        os.path.join(data_dir, 'depth_maps',
                                     '{}.h5'.format(f)))

    # Generate and save the images
    for i, pair in enumerate(pairs):
        # load metadata
        fn1, fn2 = pair.split('-')
        calib_dict = load_calib([
            os.path.join(data_dir, 'calibration',
                         'calibration_{}.h5'.format(fn1)),
            os.path.join(data_dir, 'calibration',
                         'calibration_{}.h5'.format(fn2))
        ])
        calc1 = calib_dict[fn1]
        calc2 = calib_dict[fn2]
        inl = ransac_inl_dict[pair]

        # Get depth for keypoints
        kp1 = keypoints_dict[fn1]
        kp2 = keypoints_dict[fn2]
        # Normalize keypoints
        kp1n = normalize_keypoints(kp1, calc1['K'])
        kp2n = normalize_keypoints(kp2, calc2['K'])

        # Get {R, t} from calibration information
        R_1, t_1 = calc1['R'], calc1['T'].reshape((3, 1))
        R_2, t_2 = calc2['R'], calc2['T'].reshape((3, 1))

        # Compute dR, dt
        dR = np.dot(R_2, R_1.T)
        dT = t_2 - np.dot(dR, t_1)

        if cfg.dataset == 'phototourism':
            kp1_int = np.round(kp1).astype(int)
            kp2_int = np.round(kp2).astype(int)

            kp1_int[:, 1] = np.clip(kp1_int[:, 1], 0, depth[fn1].shape[0] - 1)
            kp1_int[:, 0] = np.clip(kp1_int[:, 0], 0, depth[fn1].shape[1] - 1)
            kp2_int[:, 1] = np.clip(kp2_int[:, 1], 0, depth[fn2].shape[0] - 1)
            kp2_int[:, 0] = np.clip(kp2_int[:, 0], 0, depth[fn2].shape[1] - 1)
            d1 = np.expand_dims(depth[fn1][kp1_int[:, 1], kp1_int[:, 0]],
                                axis=-1)
            d2 = np.expand_dims(depth[fn2][kp2_int[:, 1], kp2_int[:, 0]],
                                axis=-1)

            # Project with depth
            kp1n_p, kp2n_p = get_projected_kp(kp1n, kp2n, d1, d2, dR, dT)
            kp1_p = unnormalize_keypoints(kp1n_p, calc2['K'])
            kp2_p = unnormalize_keypoints(kp2n_p, calc1['K'])

            # Re-index keypoints from matches
            kp1_inl = kp1[inl[0]]
            kp2_inl = kp2[inl[1]]
            kp1_p_inl = kp1_p[inl[0]]
            kp2_p_inl = kp2_p[inl[1]]
            kp1n_inl = kp1n[inl[0]]
            kp2n_inl = kp2n[inl[1]]
            kp1n_p_inl = kp1n_p[inl[0]]
            kp2n_p_inl = kp2n_p[inl[1]]
            d1_inl = d1[inl[0]]
            d2_inl = d2[inl[1]]

            # Filter out keypoints with invalid depth
            nonzero_index = np.nonzero(np.squeeze(d1_inl * d2_inl))
            zero_index = np.where(np.squeeze(d1_inl * d2_inl) == 0)[0]
            kp1_inl_nonzero = kp1_inl[nonzero_index]
            kp2_inl_nonzero = kp2_inl[nonzero_index]
            kp1_p_inl_nonzero = kp1_p_inl[nonzero_index]
            kp2_p_inl_nonzero = kp2_p_inl[nonzero_index]
            kp1n_inl_nonzero = kp1n_inl[nonzero_index]
            kp2n_inl_nonzero = kp2n_inl[nonzero_index]
            kp1n_p_inl_nonzero = kp1n_p_inl[nonzero_index]
            kp2n_p_inl_nonzero = kp2n_p_inl[nonzero_index]
            # Compute symmetric distance using the depth image
            d = get_truesym(kp1_inl_nonzero, kp2_inl_nonzero,
                            kp1_p_inl_nonzero, kp2_p_inl_nonzero)
        else:
            # All points are valid for computing the epipolar distance.
            zero_index = []

            # Compute symmetric epipolar distance for every match.
            kp1_inl_nonzero = kp1[inl[0]]
            kp2_inl_nonzero = kp2[inl[1]]
            kp1n_inl_nonzero = kp1n[inl[0]]
            kp2n_inl_nonzero = kp2n[inl[1]]
            # d = np.zeros(inl.shape[1])
            d = get_episym(kp1n_inl_nonzero, kp2n_inl_nonzero, dR, dT)

        # canvas
        im, v_offset, h_offset = build_composite_image(
            os.path.join(
                data_dir, 'images',
                fn1 + ('.png' if cfg.dataset == 'googleurban' else '.jpg')),
            os.path.join(
                data_dir, 'images',
                fn2 + ('.png' if cfg.dataset == 'googleurban' else '.jpg')),
            margin=5,
            axis=1 if
            (not cfg.viz_composite_vert or cfg.dataset == 'googleurban'
             or cfg.dataset == 'pragueparks') else 0)

        plt.figure(figsize=(10, 10))
        plt.imshow(im)
        linewidth = 2

        # Plot matches on points without depth
        for idx in range(len(zero_index)):
            plt.plot(
                (kp1_inl[idx, 0] + h_offset[0], kp2_inl[idx, 0] + h_offset[1]),
                (kp1_inl[idx, 1] + v_offset[0], kp2_inl[idx, 1] + v_offset[1]),
                color='b',
                linewidth=linewidth)

        # Plot matches
        # Points are normalized by the focals, which are on average ~670.

        max_dist = 5
        if cfg.dataset == 'googleurban':
            max_dist = 2e-4
        if cfg.dataset == 'pragueparks':
            max_dist = 2e-4
        cmap = matplotlib.cm.get_cmap('summer')
        order = list(range(len(d)))
        random.shuffle(order)
        for idx in order:
            if d[idx] <= max_dist:
                min_val = 0
                max_val = 255 - min_val
                col = cmap(
                    int(max_val * (1 - (max_dist - d[idx]) / max_dist) +
                        min_val))
                # col = cmap(255 * (max_dist - d[idx]) / max_dist)
            else:
                col = 'r'
            plt.plot((kp1_inl_nonzero[idx, 0] + h_offset[0],
                      kp2_inl_nonzero[idx, 0] + h_offset[1]),
                     (kp1_inl_nonzero[idx, 1] + v_offset[0],
                      kp2_inl_nonzero[idx, 1] + v_offset[1]),
                     color=col,
                     linewidth=linewidth)

        plt.tight_layout()
        plt.axis('off')
        viz_file_hq = os.path.join(viz_folder_hq, '{:05d}.png'.format(i))
        viz_file_lq = os.path.join(viz_folder_lq, '{:05d}.jpg'.format(i))
        plt.savefig(viz_file_hq, bbox_inches='tight')

        # Convert with imagemagick
        os.system('convert -quality 75 -resize \"500>\" {} {}'.format(
            viz_file_hq, viz_file_lq))

        plt.close()

    print('Done [{:.02f} s.]'.format(time() - t_start))
Esempio n. 4
0
def main(cfg):
    '''Main function to compute matches.

    Parameters
    ----------
    cfg: Namespace
        Configurations for running this part of the code.

    '''

    # Get data directory
    data_dir = get_data_path(cfg)

    # Load pre-computed pairs with the new visibility criteria
    pairs_per_th = get_pairs_per_threshold(data_dir)

    # Check if all files exist
    if is_stereo_complete(cfg):
        print(' -- already exists, skipping stereo eval')
        return

    # Load keypoints and matches
    keypoints_dict = load_h5(get_kp_file(cfg))
    matches_dict = load_h5(get_match_file(cfg))
    geom_dict = load_h5(get_geom_file(cfg))
    geom_inl_dict = load_h5(get_geom_inl_file(cfg))

    filter_matches_dict = load_h5(get_filter_match_file(cfg))

    # Load visiblity and images
    images_list = get_fullpath_list(data_dir, 'images')
    vis_list = get_fullpath_list(data_dir, 'visibility')
    if cfg.dataset != 'googleurban':
        depth_maps_list = get_fullpath_list(data_dir, 'depth_maps')
    image_names = get_item_name_list(images_list)

    # Load camera information
    calib_list = get_fullpath_list(data_dir, 'calibration')
    calib_dict = load_calib(calib_list)

    # Generate all possible pairs
    print('Generating list of all possible pairs')
    pairs = compute_image_pairs(vis_list, len(image_names), cfg.vis_th)
    print('Old pairs with the point-based visibility threshold: {} '
          '(for compatibility)'.format(len(pairs)))
    for k, v in pairs_per_th.items():
        print('New pairs at visibility threshold {}: {}'.format(k, len(v)))

    # Evaluate each stereo pair in parallel
    # Compute it for all pairs (i.e. visibility threshold 0)
    print('Compute stereo metrics for all pairs')
    #num_cores = int(multiprocessing.cpu_count() * 0.9)
    num_cores = int(len(os.sched_getaffinity(0)) * 0.9)

    result = Parallel(n_jobs=num_cores)(delayed(compute_stereo_metrics_from_E)(
        images_list[image_names.index(pair.split('-')[0])], images_list[
            image_names.index(pair.split('-')[1])],
        depth_maps_list[image_names.index(pair.split('-')[0])] if cfg.
        dataset != 'googleurban' else None, depth_maps_list[image_names.index(
            pair.split('-')[1])] if cfg.dataset != 'googleurban' else None,
        np.asarray(keypoints_dict[pair.split('-')[0]]),
        np.asarray(keypoints_dict[pair.split('-')[1]]), calib_dict[pair.split(
            '-')[0]], calib_dict[pair.split('-')
                                 [1]], geom_dict[pair], matches_dict[pair],
        filter_matches_dict[pair], geom_inl_dict[pair], cfg)
                                        for pair in tqdm(pairs_per_th['0.0']))

    # Convert previous visibility list to strings
    old_keys = []
    for pair in pairs:
        old_keys.append('{}-{}'.format(image_names[pair[0]],
                                       image_names[pair[1]]))

    # Extract scores, err_q, err_t from results
    all_keys = pairs_per_th['0.0']
    err_dict, rep_s_dict = {}, {}
    geo_s_dict_pre_match, geo_s_dict_refined_match, \
        geo_s_dict_final_match = {}, {}, {}
    true_s_dict_pre_match, true_s_dict_refined_match, \
        true_s_dict_final_match = {}, {}, {}
    for i in range(len(result)):
        if all_keys[i] in old_keys:
            if result[i][5]:
                geo_s_dict_pre_match[
                    all_keys[i]] = result[i][0][0] if result[i][0] else None
                geo_s_dict_refined_match[
                    all_keys[i]] = result[i][0][1] if result[i][0] else None
                geo_s_dict_final_match[
                    all_keys[i]] = result[i][0][2] if result[i][0] else None
                true_s_dict_pre_match[
                    all_keys[i]] = result[i][1][0] if result[i][1] else None
                true_s_dict_refined_match[
                    all_keys[i]] = result[i][1][1] if result[i][1] else None
                true_s_dict_final_match[
                    all_keys[i]] = result[i][1][2] if result[i][1] else None
                err_q = result[i][2]
                err_t = result[i][3]
                rep_s_dict[all_keys[i]] = result[i][4]
                err_dict[all_keys[i]] = [err_q, err_t]
    print('Aggregating results for the old visibility constraint: '
          '{}/{}'.format(len(geo_s_dict_pre_match), len(result)))

    # Repeat with the new visibility threshold
    err_dict_th, rep_s_dict_th = {}, {}
    geo_s_dict_pre_match_th, geo_s_dict_refined_match_th, \
        geo_s_dict_final_match_th = {}, {}, {}
    true_s_dict_pre_match_th, true_s_dict_refined_match_th, \
        true_s_dict_final_match_th = {}, {}, {}
    for th, cur_pairs in pairs_per_th.items():
        _err_dict, _rep_s_dict = {}, {}
        _geo_s_dict_pre_match, _geo_s_dict_refined_match, \
            _geo_s_dict_final_match = {}, {}, {}
        _true_s_dict_pre_match, _true_s_dict_refined_match, \
            _true_s_dict_final_match = {}, {}, {}
        for i in range(len(all_keys)):
            if len(cur_pairs) > 0 and all_keys[i] in cur_pairs:
                if result[i][5]:
                    _geo_s_dict_pre_match[all_keys[
                        i]] = result[i][0][0] if result[i][0] else None
                    _geo_s_dict_refined_match[all_keys[
                        i]] = result[i][0][1] if result[i][0] else None
                    _geo_s_dict_final_match[all_keys[
                        i]] = result[i][0][2] if result[i][0] else None
                    _true_s_dict_pre_match[all_keys[
                        i]] = result[i][1][0] if result[i][1] else None
                    _true_s_dict_refined_match[all_keys[
                        i]] = result[i][1][1] if result[i][1] else None
                    _true_s_dict_final_match[all_keys[
                        i]] = result[i][1][2] if result[i][1] else None
                    err_q = result[i][2]
                    err_t = result[i][3]
                    _rep_s_dict[
                        all_keys[i]] = result[i][4] if result[i][4] else None
                    _err_dict[all_keys[i]] = [err_q, err_t]
        geo_s_dict_pre_match_th[th] = _geo_s_dict_pre_match
        geo_s_dict_refined_match_th[th] = _geo_s_dict_refined_match
        geo_s_dict_final_match_th[th] = _geo_s_dict_final_match
        true_s_dict_pre_match_th[th] = _true_s_dict_pre_match
        true_s_dict_refined_match_th[th] = _true_s_dict_refined_match
        true_s_dict_final_match_th[th] = _true_s_dict_final_match
        err_dict_th[th] = _err_dict
        rep_s_dict_th[th] = _rep_s_dict
        print('Aggregating results for threshold "{}": {}/{}'.format(
            th, len(geo_s_dict_pre_match_th[th]), len(result)))

    # Create results folder if it does not exist
    if not os.path.exists(get_stereo_path(cfg)):
        os.makedirs(get_stereo_path(cfg))

    # Finally, save packed scores and errors
    if cfg.dataset != 'googleurban':
        save_h5(geo_s_dict_pre_match, get_stereo_epipolar_pre_match_file(cfg))
        save_h5(geo_s_dict_refined_match,
                get_stereo_epipolar_refined_match_file(cfg))
        save_h5(geo_s_dict_final_match,
                get_stereo_epipolar_final_match_file(cfg))

        save_h5(true_s_dict_pre_match,
                get_stereo_depth_projection_pre_match_file(cfg))
        save_h5(true_s_dict_refined_match,
                get_stereo_depth_projection_refined_match_file(cfg))
        save_h5(true_s_dict_final_match,
                get_stereo_depth_projection_final_match_file(cfg))
        save_h5(rep_s_dict, get_repeatability_score_file(cfg))
    save_h5(err_dict, get_stereo_pose_file(cfg))

    for th in pairs_per_th:
        if cfg.dataset != 'googleurban':
            save_h5(geo_s_dict_pre_match_th[th],
                    get_stereo_epipolar_pre_match_file(cfg, th))
            save_h5(geo_s_dict_refined_match_th[th],
                    get_stereo_epipolar_refined_match_file(cfg, th))
            save_h5(geo_s_dict_final_match_th[th],
                    get_stereo_epipolar_final_match_file(cfg, th))
            save_h5(true_s_dict_pre_match_th[th],
                    get_stereo_depth_projection_pre_match_file(cfg, th))
            save_h5(true_s_dict_refined_match_th[th],
                    get_stereo_depth_projection_refined_match_file(cfg, th))
            save_h5(true_s_dict_final_match_th[th],
                    get_stereo_depth_projection_final_match_file(cfg, th))
            save_h5(rep_s_dict_th[th], get_repeatability_score_file(cfg, th))
        save_h5(err_dict_th[th], get_stereo_pose_file(cfg, th))
Esempio n. 5
0
def main(cfg):
    '''Visualization of stereo keypoints and matches.

    Parameters
    ----------
    cfg: Namespace
        Configurations for running this part of the code.

    '''

    # Files should not be named to prevent (easy) abuse
    # Instead we use 0, ..., cfg.num_viz_stereo_pairs
    viz_folder_hq, viz_folder_lq = get_stereo_viz_folder(cfg)

    # # Do not re-run if files already exist -- off for now
    # if os.path.exists(viz_folder_lq):
    #     if all([
    #             os.path.exists(
    #                 os.path.join(viz_folder_lq, 'stereo-{}.jpg'.format(i)))
    #             for i in range(cfg.num_viz_stereo_pairs)
    #     ]):
    #         print(' -- already exists, skipping stereo visualization')
    #         return

    print(' -- Visualizations, stereo: "{}/{}"'.format(cfg.dataset, cfg.scene))
    t_start = time()

    # Load keypoints, matches and errors
    keypoints_dict = load_h5(get_kp_file(cfg))
    matches_dict = load_h5(get_match_file(cfg))

    # Hacky: We need to recompute the errors, loading only for the keys
    errors_dict = load_h5(get_stereo_epipolar_final_match_file(cfg, th='0.1'))

    # Get data directory
    data_dir = get_data_path(cfg)

    # Create results folder if it does not exist
    if not os.path.exists(viz_folder_hq):
        os.makedirs(viz_folder_hq)
    if not os.path.exists(viz_folder_lq):
        os.makedirs(viz_folder_lq)

    # Sort alphabetically and pick different images
    sorted_keys = sorted(errors_dict)
    picked = []
    pairs = []
    for pair in sorted_keys:
        fn1, fn2 = pair.split('-')
        if fn1 not in picked and fn2 not in picked:
            picked += [fn1, fn2]
            pairs += [pair]
        if len(pairs) == cfg.num_viz_stereo_pairs:
            break

    # Load all depth maps
    depth = {}
    for pair in pairs:
        files = pair.split('-')
        for f in files:
            if f not in depth:
                depth[f] = load_depth(
                    os.path.join(data_dir, 'depth_maps', '{}.h5'.format(f)))

    # Generate and save the images
    for i, pair in enumerate(pairs):
        # load metadata
        fn1, fn2 = pair.split('-')
        calib_dict = load_calib([
            os.path.join(data_dir, 'calibration',
                         'calibration_{}.h5'.format(fn1)),
            os.path.join(data_dir, 'calibration',
                         'calibration_{}.h5'.format(fn2))
        ])
        calc1 = calib_dict[fn1]
        calc2 = calib_dict[fn2]
        matches = matches_dict[pair]
        ransac_inl_dict = load_h5(get_geom_inl_file(cfg))
        inl = ransac_inl_dict[pair]

        # Get depth for keypoints
        kp1 = keypoints_dict[fn1]
        kp2 = keypoints_dict[fn2]
        kp1_int = np.round(kp1).astype(int)
        kp2_int = np.round(kp2).astype(int)

        kp1_int[:, 1] = np.clip(kp1_int[:, 1], 0, depth[fn1].shape[0] - 1)
        kp1_int[:, 0] = np.clip(kp1_int[:, 0], 0, depth[fn1].shape[1] - 1)
        d1 = np.expand_dims(depth[fn1][kp1_int[:, 1], kp1_int[:, 0]], axis=-1)
        d2 = np.expand_dims(depth[fn2][kp2_int[:, 1], kp2_int[:, 0]], axis=-1)

        # Get {R, t} from calibration information
        R_1, t_1 = calc1['R'], calc1['T'].reshape((3, 1))
        R_2, t_2 = calc2['R'], calc2['T'].reshape((3, 1))

        # Compute dR, dt
        dR = np.dot(R_2, R_1.T)
        dT = t_2 - np.dot(dR, t_1)

        # Normalize keypoints
        kp1n = normalize_keypoints(kp1, calc1['K'])
        kp2n = normalize_keypoints(kp2, calc2['K'])

        # Project with depth
        kp1n_p, kp2n_p = get_projected_kp(kp1n, kp2n, d1, d2, dR, dT)
        kp1_p = unnormalize_keypoints(kp1n_p, calc2['K'])
        kp2_p = unnormalize_keypoints(kp2n_p, calc1['K'])

        # Re-index keypoints from matches
        kp1_inl = kp1[inl[0]]
        kp2_inl = kp2[inl[1]]
        kp1_p_inl = kp1_p[inl[0]]
        kp2_p_inl = kp2_p[inl[1]]
        kp1n_inl = kp1n[inl[0]]
        kp2n_inl = kp2n[inl[1]]
        kp1n_p_inl = kp1n_p[inl[0]]
        kp2n_p_inl = kp2n_p[inl[1]]
        d1_inl = d1[inl[0]]
        d2_inl = d2[inl[1]]

        # Filter out keypoints with invalid depth
        nonzero_index = np.nonzero(np.squeeze(d1_inl * d2_inl))
        zero_index = np.where(np.squeeze(d1_inl * d2_inl) == 0)[0]
        kp1_inl_nonzero = kp1_inl[nonzero_index]
        kp2_inl_nonzero = kp2_inl[nonzero_index]
        kp1_p_inl_nonzero = kp1_p_inl[nonzero_index]
        kp2_p_inl_nonzero = kp2_p_inl[nonzero_index]
        kp1n_inl_nonzero = kp1n_inl[nonzero_index]
        kp2n_inl_nonzero = kp2n_inl[nonzero_index]
        kp1n_p_inl_nonzero = kp1n_p_inl[nonzero_index]
        kp2n_p_inl_nonzero = kp2n_p_inl[nonzero_index]

        # Compute symmetric distance using the depth image
        true_d = get_truesym(kp1_inl_nonzero, kp2_inl_nonzero,
                             kp1_p_inl_nonzero, kp2_p_inl_nonzero)

        # canvas
        im, v_offset, h_offset = build_composite_image(
            os.path.join(data_dir, 'images', fn1 + '.jpg'),
            os.path.join(data_dir, 'images', fn2 + '.jpg'),
            margin=5,
            axis=0 if cfg.viz_composite_vert else 1)

        plt.figure(figsize=(10, 10))
        plt.imshow(im)
        linewidth = 2

        # Plot matches on points without depth
        for idx in range(len(zero_index)):
            plt.plot((kp1[idx, 0] + h_offset[0], kp2[idx, 0] + h_offset[1]),
                     (kp1[idx, 1] + v_offset[0], kp2[idx, 1] + v_offset[1]),
                     color='b',
                     linewidth=linewidth)

        # Plot matches on points with depth
        max_dist = 5
        cmap = matplotlib.cm.get_cmap('summer')
        order = list(range(len(true_d)))
        random.shuffle(order)
        for idx in order:
            if true_d[idx] <= max_dist:
                min_val = 0
                max_val = 255 - min_val
                col = cmap(
                    int(max_val * (1 - (max_dist - true_d[idx]) / max_dist) +
                        min_val))
                # col = cmap(255 * (max_dist - true_d[idx]) / max_dist)
            else:
                col = 'r'
            plt.plot((kp1_inl_nonzero[idx, 0] + h_offset[0],
                      kp2_inl_nonzero[idx, 0] + h_offset[1]),
                     (kp1_inl_nonzero[idx, 1] + v_offset[0],
                      kp2_inl_nonzero[idx, 1] + v_offset[1]),
                     color=col,
                     linewidth=linewidth)

        plt.tight_layout()
        plt.axis('off')
        viz_file_hq = os.path.join(viz_folder_hq, '{:05d}.png'.format(i))
        viz_file_lq = os.path.join(viz_folder_lq, '{:05d}.jpg'.format(i))
        plt.savefig(viz_file_hq, bbox_inches='tight')

        # Convert with imagemagick
        os.system('convert -quality 75 -resize \"500>\" {} {}'.format(
            viz_file_hq, viz_file_lq))

        plt.close()

    print('done [{:.02f} s.]'.format(time() - t_start))
Esempio n. 6
0
def make_xy(sfm_cfg):
    """
    Messy conveniency function to re-format our data into that expected by the
    Context Networks release.
    """

    xs = []
    ys = []
    Rs = []
    ts = []
    cx1s = []
    cy1s = []
    f1s = []
    cx2s = []
    cy2s = []
    f2s = []
    key_list = []

    data_dir = get_data_path(sfm_cfg)

    keypoints_dict = load_h5(get_kp_file(sfm_cfg))
    match_dict = load_h5(get_match_file(sfm_cfg))
    calib_list = get_fullpath_list(data_dir, 'calibration')
    calib_dict = load_calib(calib_list)

    print('Converting data to a CNe friendly format...')
    for image_pair, match_idx_pairs in tqdm(match_dict.items()):
        key_list.append(image_pair)

        # Get image name and read image
        image_1, image_2 = image_pair.split('-')
        image1 = cv2.imread(os.path.join(data_dir, 'images', image_1 + '.jpg'))
        image2 = cv2.imread(os.path.join(data_dir, 'images', image_2 + '.jpg'))

        # Get dR
        R_1 = calib_dict[image_1]['R']
        R_2 = calib_dict[image_2]['R']
        dR = np.dot(R_2, R_1.T)

        # Get dt
        t_1 = calib_dict[image_1]['T'].reshape((3, 1))
        t_2 = calib_dict[image_2]['T'].reshape((3, 1))
        dt = t_2 - np.dot(dR, t_1)

        # Save R, t for evaluation
        Rs += [np.array(dR).reshape(3, 3)]

        # normalize t before saving
        dtnorm = np.sqrt(np.sum(dt**2))
        assert (dtnorm > 1e-5)
        dt /= dtnorm
        ts += [np.array(dt).flatten()]

        # Save img1, center offset, f
        # img1s += [image1.transpose(2, 0, 1)]
        cx1 = (image1.shape[1] - 1.0) * 0.5
        cy1 = (image1.shape[0] - 1.0) * 0.5
        f1 = max(image1.shape[1] - 1.0, image1.shape[0] - 1.0)
        cx1s += [cx1]
        cy1s += [cy1]
        f1s += [f1]

        # Save img2, center offset, f
        # img2s += [image2.transpose(2, 0, 1)]
        cx2 = (image2.shape[1] - 1.0) * 0.5
        cy2 = (image2.shape[0] - 1.0) * 0.5
        f2 = max(image2.shape[1] - 1.0, image2.shape[0] - 1.0)
        cx2s += [cx2]
        cy2s += [cy2]
        f2s += [f2]

        # Get key points
        kp1 = np.asarray(keypoints_dict[image_1])
        kp1 = kp1[:, :2]
        kp2 = np.asarray(keypoints_dict[image_2])
        kp2 = kp2[:, :2]

        # Normalize Key points
        kp1 = (kp1 - np.asarray([cx1, cy1]).T) / np.asarray([f1, f1]).T
        kp2 = (kp2 - np.asarray([cx2, cy2]).T) / np.asarray([f2, f2]).T

        # Shuffle key points based on match index
        x1_index = match_idx_pairs[0, :]
        x2_index = match_idx_pairs[1, :]

        # Get shuffled key points for image 1
        x1 = kp1[x1_index, :]

        # Assume depth = 1
        z = np.ones((x1.shape[0], 1))

        # Construct 3D points
        y1 = np.concatenate([x1 * z, z], axis=1)

        # Project 3D points to image 2
        y1p = np.matmul(dR[None], y1[..., None]) + dt[None]

        # move back to the canonical plane
        x1p = y1p[:, :2, 0] / y1p[:, 2, 0][..., None]

        # Get shuffled key points for image 2
        x2 = kp2[x2_index, :]

        # make xs in NHWC
        xs += [
            np.concatenate([x1, x2], axis=1).T.reshape(4, 1, -1).transpose(
                (1, 2, 0))
        ]
        # Get the geodesic distance using with x1, x2, dR, dt
        geod_d = get_sampsons(x1, x2, dR, dt)

        # Get *rough* reprojection errors. Note that the depth may be noisy. We
        # ended up not using this...
        reproj_d = np.sum((x2 - x1p)**2, axis=1)

        # add to label list
        ys += [np.stack([geod_d, reproj_d], axis=1)]

    res_dict = {}
    res_dict['xs'] = xs
    res_dict['ys'] = ys
    res_dict['Rs'] = Rs
    res_dict['ts'] = ts
    res_dict['cx1s'] = cx1s
    res_dict['cy1s'] = cy1s
    res_dict['f1s'] = f1s
    res_dict['cx2s'] = cx2s
    res_dict['cy2s'] = cy2s
    res_dict['f2s'] = f2s

    return res_dict, key_list
Esempio n. 7
0
    # Extract match mask
    save_match_inlier(sfm_cfg, key_list, mask_dict)


if __name__ == '__main__':
    cfg, unparsed = get_config()

    # If we have unparsed arguments, print usage and exit
    if len(unparsed) > 0:
        print_usage()
        exit(1)

    if not os.path.exists(get_filter_path(cfg)):
        os.makedirs(get_filter_path(cfg))

    cur_key = 'config_{}_{}'.format(cfg.dataset, cfg.task)
    if cur_key not in cfg.method_dict:
        raise ValueError('Cannot find "{}"'.format(cur_key))
    cur_filter = cfg.method_dict[cur_key]['outlier_filter']

    if cur_filter['method'] == 'cne-bp-nd':
        from third_party.cne.config import get_config as get_cne_config_from_cne
        from third_party.cne.network import MyNetwork
        from third_party.cne.geom import get_sampsons
        cne_interface(cfg)
    elif cur_filter['method'] == 'none':
        copyfile(get_match_file(cfg), get_filter_match_file(cfg))
        save_h5({'cost': 0.0}, get_filter_cost_file(cfg))
    else:
        raise ValueError('Unknown prefilter type')
def is_match_complete(cfg):
    '''Checks if match computation is complete.'''

    is_complete = os.path.exists(get_match_file(cfg))

    return is_complete