Esempio n. 1
0
    def train_model(self,X1, X2, gt, para_lambda, dims, act, lr, epochs, batch_size):
        err_total = list()
        start = timeit.default_timer()
        self.dims=dims
       
        self.latent_dim=latent_dim=200
        H = np.random.uniform(0, 1, [X1.shape[0], dims[2][0]])
        with tf.variable_scope("H"):
            h_input = tf.Variable(xavier_init(batch_size, dims[2][0]), name='LatentSpaceData')
            h_list = tf.trainable_variables()
            
        net_dg1 = Net_dg(1, dims[2], act[2])
        net_dg2 = Net_dg(2, dims[3], act[3])

        x1_input = tf.placeholder(np.float32, [None, dims[0][0]])
        x2_input = tf.placeholder(np.float32, [None, dims[1][0]])
        x1_input0=Input([None, dims[0][0]],tensor=x1_input)
        x2_input0=Input([None, dims[1][0]],tensor=x2_input)
    
        self.encoder1=self.encoder(x1_input0)
        self.encoder2=self.encoder(x2_input0)
        z_mean1,z_log_var1=self.encoder1(x1_input0)
        z_mean2,z_log_var2=self.encoder2(x2_input0)

        z1_input=Input(shape=(self.latent_dim,))
        z2_input=Input(shape=(self.latent_dim,))

        self.decoder1=self.decoder(z1_input,240)
        self.decoder2=self.decoder(z2_input,216)
        #x_recon1  =self.decoder1(z1_input)
        #x_recon2  =self.decoder2 (z2_input)
        
        #self.decoder1=Model(z1_input,x_recon1)
        #self.decoder2=Model(z2_input,x_recon2)
        x_recon1_withnoise=self.decoder1(z_mean1)       #带噪声的loss
        x_recon2_withnoise=self.decoder2(z_mean2)
        def sampling(args):
            z_mean, z_log_var = args
            epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim))
            return z_mean + K.exp(z_log_var / 2) * epsilon

        z1 = Lambda(sampling, output_shape=(latent_dim,))([z_mean1, z_log_var1])
        z2=Lambda(sampling,output_shape=(latent_dim,))([z_mean2,z_log_var2])
        x_recon1_true = self.decoder1(z1)            #不带噪声的loss
        x_recon2_true = self.decoder2(z2)
        kl_loss1 = - 0.5 * K.mean(1 + z_log_var1 - K.square(z_mean1) - K.exp(z_log_var1), axis=-1)
        kl_loss2 = - 0.5 * K.mean(1 + z_log_var2 - K.square(z_mean2) - K.exp(z_log_var2), axis=-1)
        #! fea_latent
        fea1_latent=tf.placeholder(np.float32, [None, latent_dim])
        fea2_latent=tf.placeholder(np.float32, [None, latent_dim])
        loss_degra1=0.5*tf.losses.mean_squared_error(z1, fea1_latent)
        loss_degra2=0.5*tf.losses.mean_squared_error(z2, fea2_latent)

        def shuffling(x):
            idxs = K.arange(0, K.shape(x)[0])
            idxs = K.tf.random_shuffle(idxs)
            return K.gather(x, idxs)

        z1_shuffle = Lambda(shuffling)(z1)
        z_z_1_true = Concatenate()([z1, z1])       # replicated feature vector
        z_z_1_false = Concatenate()([z1, z1_shuffle])    # drawn from another image

        z2_shuffle=Lambda(shuffling)(z2)
        z_z_2_true=Concatenate()([z2,z2])
        z_z_2_false=Concatenate()([z2,z2_shuffle])

        z1_in=Input(shape=(latent_dim*2,))
        z2_in=Input(shape=(latent_dim*2,))
        #z1_discr=self.discriminator(z1_in)
        #z2_discr=self.discriminator(z2_in)
        GlobalDiscriminator1=self.discriminator(z1_in)   #Model(z1_in,z1_discr)
        GlobalDiscriminator2=self.discriminator(z2_in)   #Model(z2_in,z2_discr)

        z_z_1_true_scores=GlobalDiscriminator1(z_z_1_true)
        z_z_1_false_scores=GlobalDiscriminator1(z_z_2_false)
        z_z_2_true_scores=GlobalDiscriminator2(z_z_2_true)
        z_z_2_false_scores=GlobalDiscriminator2(z_z_2_false)
        global_info_loss1=-K.mean(K.log(z_z_1_true_scores+1e-6)+K.log(1-z_z_1_false_scores+1e-6)) 
        global_info_loss2=-K.mean(K.log(z_z_2_true_scores+1e-6)+K.log(1-z_z_2_false_scores+1e-6))

        lamb=5 #5
        x1ent_loss=1*K.mean((x1_input-x_recon1_true)**2,0)
        x2ent_loss=1*K.mean((x2_input-x_recon2_true)**2,0)
        x1ent1_loss=0.5*K.mean((x_recon1_withnoise-x_recon1_true)**2,0)
        x2ent1_loss=0.5*K.mean((x_recon2_withnoise-x_recon2_true)**2,0)
        loss_vae1=lamb*K.sum(x1ent_loss)+lamb*K.sum(x1ent1_loss)+0.001*K.sum(global_info_loss1) +1.5*K.sum(kl_loss1)#0.001
        loss_vae2=lamb*K.sum(x2ent_loss)+lamb*K.sum(x2ent1_loss)+0.001*K.sum(global_info_loss2) +1.5*K.sum(kl_loss2) #0.001
        loss_ae=loss_vae1+loss_vae2+loss_degra1+loss_degra2
        update_ae = tf.train.AdamOptimizer(1.0e-3).minimize(loss_ae)

        loss_dg = para_lambda * (
                net_dg1.loss_degradation(h_input, fea1_latent) 
                + net_dg2.loss_degradation(h_input, fea2_latent))
        update_dg = tf.train.AdamOptimizer(lr[2]).minimize(loss_dg, var_list=net_dg1.netpara.extend(net_dg2.netpara))

        update_h = tf.train.AdamOptimizer(lr[3]).minimize(loss_dg, var_list=h_list)
        g1 = net_dg1.get_g(h_input)
        g2 = net_dg2.get_g(h_input)

        gpu_options = tf.GPUOptions(allow_growth=True)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
        sess.run(tf.global_variables_initializer())

        num_samples = X1.shape[0]
        num_batchs = math.ceil(num_samples / batch_size)
        for j in range(epochs[1]):
            X1,X2,H,gt=shuffle(X1,X2,H,gt)
            for num_batch_i in range(int(num_batchs)-1):
                start_idx, end_idx = num_batch_i * batch_size, (num_batch_i + 1) * batch_size
                end_idx = min(num_samples, end_idx)
                batch_x1 = X1[start_idx: end_idx, ...]
                batch_x2 = X2[start_idx: end_idx, ...]
                batch_h = H[start_idx: end_idx, ...]

                batch_g1=sess.run(g1,feed_dict={h_input:batch_h})
                batch_g2=sess.run(g2,feed_dict={h_input:batch_h})

                #ADM-step1 : optimize inner AEs 
                _,val_dg=sess.run([update_ae,loss_ae],feed_dict={x1_input:batch_x1,x2_input:batch_x2,
                                                                fea1_latent:batch_g1,fea2_latent:batch_g2})

                batch_z_half1=sess.run(z1,feed_dict={x1_input:batch_x1})
                batch_z_half2=sess.run(z2,feed_dict={x2_input:batch_x2})

                sess.run(tf.assign(h_input,batch_h))

                #ADM-step2: optimize dg nets
                _,val_dg=sess.run([update_dg,loss_dg],feed_dict={fea1_latent:batch_z_half1,
                                                        fea2_latent:batch_z_half2})
                
                #ADM-step3:update H
                for k in range(epochs[2]):
                    sess.run(update_h,feed_dict={fea1_latent:batch_z_half1,fea2_latent:batch_z_half2})
                batch_h_new=sess.run(h_input)
                H[start_idx: end_idx, ...] = batch_h_new

                sess.run(tf.assign(h_input, batch_h_new))
                batch_g1_new = sess.run(g1, feed_dict={h_input: batch_h})
                batch_g2_new = sess.run(g2, feed_dict={h_input: batch_h})

                val_total = sess.run(loss_ae, feed_dict={x1_input: batch_x1, x2_input: batch_x2,
                                                        fea1_latent: batch_g1_new, fea2_latent: batch_g2_new})
                                                        
                err_total.append(val_total)
                
                #output = "Epoch : {:.0f} -- Batch : {:.0f} ===> Total training loss = {:.4f} ".format((j + 1),
                 #                                                                                   (num_batch_i + 1),
                  #                                                                                  val_total)
                #print(output)
            print("epoch:",j+1)
            print_result(n_clusters, H, gt)
        elapsed = (timeit.default_timer() - start)
        print("Time used: ", elapsed)
        '''
        #?使用RBM  64->64
        rbm=RBM_t1(64,64)
        
        H=tf.cast(H,tf.float32)
        with tf.Session() as se:
            H=H.eval()
            H=H.tolist()
        rbm.train(H)
        H=rbm.rbm_outpt(H)
        '''
        scio.savemat('H.mat', mdict={'H': H, 'gt': gt, 'loss_total': err_total, 'time': elapsed,
                                        'x1': X1, 'x2': X2})
        return H, gt
Esempio n. 2
0
if __name__ == '__main__':
    data = Dataset('handwritten_2views')
    x1, x2, gt = data.load_data()
    x1 = data.normalize(x1, 0)
    x2 = data.normalize(x2, 0)
    n_clusters = len(set(gt))

    act_ae1, act_ae2, act_dg1, act_dg2 = 'sigmoid', 'sigmoid', 'sigmoid', 'sigmoid'
    v1_aedims_ = [[240, 200], [200, 240]]

    v2_aedims_ = [[216, 200], [200, 216]]
    #原来的
    mae_dims_ = [[240, 200, 150, 32], [216, 200, 150, 32], [32, 150, 200, 240],
                 [32, 150, 200, 216]]
    #现在用的
    #dims_dg1 = [64, 100]
    #dims_dg2 = [64, 100]
    dis_dims_ = [200, 150, 1]
    para_lambda = 1
    batch_size = 100

    epochs = 50

    model = MaeAEModel(v1_aedims=v1_aedims_,
                       v2_aedims=v2_aedims_,
                       mae_dims=mae_dims_,
                       dis_dims=dis_dims_)  #duaAE用的
    H, gt = model.train_model(x1, x2, gt, epochs, batch_size)
    #H,gt=model(x1, x2, gt, para_lambda, dims, act, lr, epochs, batch_size)
    print_result(n_clusters, H, gt)
Esempio n. 3
0
    def train_model(self,X1, X2, gt, epochs, batch_size):
        err_total = list()
        start = timeit.default_timer()
        n_clusters = len(set(gt))
        
        
        H = np.random.uniform(0, 1, [X1.shape[0], self.h_dim])

        x1_input = tf.placeholder(np.float32, [None, self.input1_shape])
        x2_input = tf.placeholder(np.float32, [None, self.input2_shape])
        x1_input0=Input([None, self.input1_shape],tensor=x1_input)
        x2_input0=Input([None, self.input2_shape],tensor=x2_input)
    
        self.encoder1=self.encoder(x1_input0,dims=self.v1_dims[0])
        self.encoder2=self.encoder(x2_input0,dims=self.v2_dims[0])

        z1=self.encoder1(x1_input0)
        z2=self.encoder2(x2_input0)
        self.decoder1=self.decoder(dims=self.v1_dims[1])
        self.decoder2=self.decoder(dims=self.v2_dims[1])
        x_recon1_withnoise=self.decoder1(z1)       #带噪声的loss
        x_recon2_withnoise=self.decoder2(z2)

        self.maeencoder=self.mae_encoder(dims1=self.mae_dims[0],dims2=self.mae_dims[1],h_dim=self.h_dim)
        encoded,z_mean,z_log_var=self.maeencoder([z1,z2])
        vae_mse_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)

        encoded_input = Input(shape=(self.h_dim,))
        decoded_1,decoded_2=self.mae_decoder(encoded_input,dims1=self.mae_dims[2],dims2=self.mae_dims[3])
        self.maedecoder = Model(encoded_input, [decoded_1, decoded_2])
     
        decoder_output = self.maedecoder(encoded)
        lamb=self.lamb
        maeloss=lamb*K.sum(1*K.mean((z1-decoder_output[0])**2,0))+lamb*K.sum(1*K.mean((z2-decoder_output[1])**2,0))+vae_mse_loss


        def shuffling(x):
            idxs = K.arange(0, K.shape(x)[0])
            idxs = K.tf.random_shuffle(idxs)
            return K.gather(x, idxs)

        z1_shuffle = Lambda(shuffling)(z1)
        z_z_1_true = Concatenate()([z1, z1])       # replicated feature vector
        z_z_1_false = Concatenate()([z1, z1_shuffle])    # drawn from another image

        z2_shuffle=Lambda(shuffling)(z2)
        z_z_2_true=Concatenate()([z2,z2])
        z_z_2_false=Concatenate()([z2,z2_shuffle])

        z1_in=Input(shape=(self.v1_latent_dim*2,))
        z2_in=Input(shape=(self.v2_latent_dim*2,))
        #z1_discr=self.discriminator(z1_in)
        #z2_discr=self.discriminator(z2_in)
        GlobalDiscriminator1=self.discriminator(z1_in,dims=self.dis_dims)   #Model(z1_in,z1_discr)
        GlobalDiscriminator2=self.discriminator(z2_in,dims=self.dis_dims)   #Model(z2_in,z2_discr)

        z_z_1_true_scores=GlobalDiscriminator1(z_z_1_true)
        z_z_1_false_scores=GlobalDiscriminator1(z_z_2_false)
        z_z_2_true_scores=GlobalDiscriminator2(z_z_2_true)
        z_z_2_false_scores=GlobalDiscriminator2(z_z_2_false)
        global_info_loss1=-K.mean(K.log(z_z_1_true_scores+1e-6)+K.log(1-z_z_1_false_scores+1e-6)) 
        global_info_loss2=-K.mean(K.log(z_z_2_true_scores+1e-6)+K.log(1-z_z_2_false_scores+1e-6))

        lamb=5 #5

        x1ent_loss=1*K.mean((x1_input-x_recon1_withnoise)**2,0)
        x2ent_loss=1*K.mean((x2_input-x_recon2_withnoise)**2,0)
        loss_vae1=lamb*K.sum(x1ent_loss)+0.001*K.sum(global_info_loss1) #0.001
        loss_vae2=lamb*K.sum(x2ent_loss)+0.001*K.sum(global_info_loss2)  #0.001
        loss_ae=loss_vae1+loss_vae2+maeloss
        update_ae = tf.train.AdamOptimizer(self.lr_ae).minimize(loss_ae)
        
        gpu_options = tf.GPUOptions(allow_growth=True)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
        sess.run(tf.global_variables_initializer())

        num_samples = X1.shape[0]
        num_batchs = math.ceil(num_samples / batch_size)
        for j in range(epochs):
            X1,X2,H,gt=shuffle(X1,X2,H,gt)
            for num_batch_i in range(int(num_batchs)-1):
                start_idx, end_idx = num_batch_i * batch_size, (num_batch_i + 1) * batch_size
                end_idx = min(num_samples, end_idx)
                batch_x1 = X1[start_idx: end_idx, ...]
                batch_x2 = X2[start_idx: end_idx, ...]
                batch_h = H[start_idx: end_idx, ...]

            
                #ADM-step1 : optimize inner AEs 
                _,val_dg,h_get=sess.run([update_ae,loss_ae,encoded],feed_dict={x1_input:batch_x1,x2_input:batch_x2})
                                                                #fea1_latent:batch_g1,fea2_latent:batch_g2})

                #batch_z_half1=sess.run(z1,feed_dict={x1_input:batch_x1})
                #batch_z_half2=sess.run(z2,feed_dict={x2_input:batch_x2})

                

                #ADM-step2: optimize dg nets

                #_,val_dg=sess.run([update_mae,maeloss],feed_dict={z1_input:batch_z_half1,z2_input:batch_z_half2})
                #ADM-step3:update H
                
                #for k in range(epochs[2]):
                #    sess.run(update_h,feed_dict={fea1_latent:batch_z_half1,fea2_latent:batch_z_half2})
                #h_get=sess.run(encoded,feed_dict={z1_input:batch_z_half1,z2_input:batch_z_half2})
                
                H[start_idx: end_idx, ...] = h_get

                

                #val_total = sess.run(loss_ae, feed_dict={x1_input: batch_x1, x2_input: batch_x2,
                    #                                    fea1_latent: batch_g1_new, fea2_latent: batch_g2_new})
                                                        
                #err_total.append(val_total)
                
                #output = "Epoch : {:.0f} -- Batch : {:.0f} ===> Total training loss = {:.4f} ".format((j + 1),
                 #                                                                                   (num_batch_i + 1),
                  #                                                                                  val_total)
                #print(output)
            print("epoch:",j+1)

            print_result(n_clusters, H, gt)
        elapsed = (timeit.default_timer() - start)
        print("Time used: ", elapsed)
        print(H)
        scio.savemat('H.mat', mdict={'H': H, 'gt': gt, 'loss_total': err_total, 'time': elapsed,
                                        'x1': X1, 'x2': X2})
        return H, gt
Esempio n. 4
0
 def help(self):
     print "{} subcommand includes:\n".format(TERM_NAME)
     for command, klass in self.cs_map.iteritems():
         help_doc = klass.__doc__
         print_result(command, help_doc, "", {}, msg_len=50)
Esempio n. 5
0
def model(X1, X2, gt, para_lambda, dims, act, lr, epochs, batch_size):
    """
    Building model
    :rtype: object
    :param X1: data of view1
    :param X2: data of view2
    :param gt: ground truth
    :param para_lambda: trade-off factor in objective
    :param dims: dimensionality of each layer
    :param act: activation function of each net
    :param lr: learning rate
    :param epochs: learning epoch
    :param batch_size: batch size
    """
    start = timeit.default_timer()
    err_pre = list()
    err_total = list()

    # define each net architecture and variable(refer to framework-simplified)
    net_ae1 = Net_ae(1, dims[0], para_lambda, act[0])
    net_ae2 = Net_ae(2, dims[1], para_lambda, act[1])
    net_dg1 = Net_dg(1, dims[2], act[2])
    net_dg2 = Net_dg(2, dims[3], act[3])

    H = np.random.uniform(0, 1, [X1.shape[0], dims[2][0]])
    x1_input = tf.placeholder(np.float32, [None, dims[0][0]])
    x2_input = tf.placeholder(np.float32, [None, dims[1][0]])

    with tf.variable_scope("H"):
        h_input = tf.Variable(xavier_init(batch_size, dims[2][0]),
                              name='LatentSpaceData')
        h_list = tf.trainable_variables()
    fea1_latent = tf.placeholder(np.float32, [None, dims[0][-1]])
    fea2_latent = tf.placeholder(np.float32, [None, dims[1][-1]])

    loss_pre = net_ae1.loss_reconstruct(x1_input) + net_ae2.loss_reconstruct(
        x2_input)
    pre_train = tf.train.AdamOptimizer(lr[0]).minimize(loss_pre)

    loss_ae = net_ae1.loss_total(x1_input, fea1_latent) + net_ae2.loss_total(
        x2_input, fea2_latent)
    update_ae = tf.train.AdamOptimizer(lr[1]).minimize(
        loss_ae, var_list=net_ae1.netpara.extend(net_ae2.netpara))
    z_half1 = net_ae1.get_z_half(x1_input)
    z_half2 = net_ae2.get_z_half(x2_input)

    loss_dg = para_lambda * (net_dg1.loss_degradation(h_input, fea1_latent) +
                             net_dg2.loss_degradation(h_input, fea2_latent))
    update_dg = tf.train.AdamOptimizer(lr[2]).minimize(
        loss_dg, var_list=net_dg1.netpara.extend(
            net_dg2.netpara))  #net_dg1.netpara.extend(net_dg2.netpara)

    update_h = tf.train.AdamOptimizer(lr[3]).minimize(loss_dg, var_list=h_list)
    g1 = net_dg1.get_g(h_input)
    g2 = net_dg2.get_g(h_input)

    gpu_options = tf.GPUOptions(allow_growth=True)
    sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
    sess.run(tf.global_variables_initializer())

    #writer = tf.summary.FileWriter("./mnist_nn_log",sess.graph)
    #writer.close()
    # init inner AEs

    for k in range(epochs[0]):
        X1, X2, gt = shuffle(X1, X2, gt)
        for batch_x1, batch_x2, batch_No in next_batch(X1, X2, batch_size):
            _, val_pre = sess.run([pre_train, loss_pre],
                                  feed_dict={
                                      x1_input: batch_x1,
                                      x2_input: batch_x2
                                  })
            err_pre.append(val_pre)

            output = "Pre_epoch : {:.0f}, Batch : {:.0f}  ===> Reconstruction loss = {:.4f} ".format(
                (k + 1), batch_No, val_pre)
            print(output)

    # the whole training process(ADM)
    num_samples = X1.shape[0]
    num_batchs = math.ceil(num_samples / batch_size)  # fix the last batch
    for j in range(epochs[1]):
        X1, X2, H, gt = shuffle(X1, X2, H, gt)
        for num_batch_i in range(int(num_batchs) - 1):
            start_idx, end_idx = num_batch_i * batch_size, (num_batch_i +
                                                            1) * batch_size
            end_idx = min(num_samples, end_idx)
            batch_x1 = X1[start_idx:end_idx, ...]
            batch_x2 = X2[start_idx:end_idx, ...]
            batch_h = H[start_idx:end_idx, ...]

            batch_g1 = sess.run(g1, feed_dict={h_input: batch_h})
            batch_g2 = sess.run(g2, feed_dict={h_input: batch_h})

            # ADM-step1: optimize inner AEs and
            _, val_ae = sess.run(
                [update_ae, loss_ae],
                feed_dict={
                    x1_input: batch_x1,
                    x2_input: batch_x2,
                    fea1_latent: batch_g1,
                    fea2_latent: batch_g2
                })

            # get inter - layer features(i.e., z_half)
            batch_z_half1 = sess.run(z_half1, feed_dict={x1_input: batch_x1})
            batch_z_half2 = sess.run(z_half2, feed_dict={x2_input: batch_x2})

            sess.run(tf.assign(h_input, batch_h))
            # ADM-step2: optimize dg nets

            _, val_dg = sess.run([update_dg, loss_dg],
                                 feed_dict={
                                     fea1_latent: batch_z_half1,
                                     fea2_latent: batch_z_half2
                                 })

            # ADM-step3: update H
            for k in range(epochs[2]):
                sess.run(update_h,
                         feed_dict={
                             fea1_latent: batch_z_half1,
                             fea2_latent: batch_z_half2
                         })

            batch_h_new = sess.run(h_input)

            H[start_idx:end_idx, ...] = batch_h_new

            # get latest feature_g for next iteration
            sess.run(tf.assign(h_input, batch_h_new))
            batch_g1_new = sess.run(g1, feed_dict={h_input: batch_h})
            batch_g2_new = sess.run(g2, feed_dict={h_input: batch_h})

            val_total = sess.run(loss_ae,
                                 feed_dict={
                                     x1_input: batch_x1,
                                     x2_input: batch_x2,
                                     fea1_latent: batch_g1_new,
                                     fea2_latent: batch_g2_new
                                 })

            err_total.append(val_total)

            output = "Epoch : {:.0f} -- Batch : {:.0f} ===> Total training loss = {:.4f} ".format(
                (j + 1), (num_batch_i + 1), val_total)
            #print(output)
        print("epoch:", j + 1)
        print_result(n_clusters, H, gt)

    elapsed = (timeit.default_timer() - start)
    print("Time used: ", elapsed)
    '''
    #?使用RBM  64->64
    rbm=RBM_t1(64,64)
    
    H=tf.cast(H,tf.float32)
    with tf.Session() as se:
        H=H.eval()
        H=H.tolist()
    rbm.train(H)
    H=rbm.rbm_outpt(H)
    '''
    scio.savemat('H.mat',
                 mdict={
                     'H': H,
                     'gt': gt,
                     'loss_total': err_total,
                     'time': elapsed,
                     'x1': X1,
                     'x2': X2
                 })
    return H, gt
Esempio n. 6
0
                prv_hb = cur_hb
                prv_vb = cur_vb
            _a, _b, _c, loss = self.runG(X, cur_w, cur_hb, cur_vb)
            print('Epoch: %d' % epoch, 'loss: %f' % loss)

        self.w = prv_w
        self.hb = prv_hb
        self.vb = prv_vb

    def rbm_outpt(self, X):
        input_X = tf.constant(X, dtype=tf.float32)
        _w = tf.constant(self.w)
        _hb = tf.constant(self.hb)
        out = tf.math.sigmoid(tf.linalg.matmul(input_X, _w) + _hb)
        return out


# %%
trX = train_images[:10000]
trY = train_labels[:10000]
print(trY[:100])
rbm = RBM_t2(784, 500)
rbm.train(trX)
out = rbm.rbm_outpt(trX)

print_result(10, out, trY, count=10)

# %%
print(trX[0])
# %%