Esempio n. 1
0
def rejection_sampling_z(N, y, W1, W2):
    """
    A rejection sampling method for sampling the inactive variables from a
    polytope.

    **See Also**

    domains.sample_z
    """
    m, n = W1.shape
    s = np.dot(W1, y).reshape((m, 1))

    # Build a box around z for uniform sampling
    qps = QPSolver()
    A = np.vstack((W2, -W2))
    b = np.vstack((-1-s, -1+s)).reshape((2*m, 1))
    lbox, ubox = np.zeros((1,m-n)), np.zeros((1,m-n))
    for i in range(m-n):
        clb = np.zeros((m-n,1))
        clb[i,0] = 1.0
        lbox[0,i] = qps.linear_program_ineq(clb, A, b)[i,0]
        cub = np.zeros((m-n,1))
        cub[i,0] = -1.0
        ubox[0,i] = qps.linear_program_ineq(cub, A, b)[i,0]
    bn = BoundedNormalizer(lbox, ubox)
    Zbox = bn.unnormalize(np.random.uniform(-1.0,1.0,size=(50*N,m-n)))
    ind = np.all(np.dot(A, Zbox.T) >= b, axis=0)

    if np.sum(ind) >= N:
        Z = Zbox[ind,:]
        return Z[:N,:].reshape((N,m-n))
    else:
        return None
Esempio n. 2
0
def rejection_sampling_z(N, y, W1, W2):
    """A rejection sampling method for sampling the from a polytope.

    Parameters
    ----------
    N : int
        the number of inactive variable samples
    y : ndarray
        the value of the active variables
    W1 : ndarray
        m-by-n matrix that contains the eigenvector bases of the n-dimensional
        active subspace
    W2 : ndarray
        m-by-(m-n) matrix that contains the eigenvector bases of the
        (m-n)-dimensional inactive subspace

    Returns
    -------
    Z : ndarray
        N-by-(m-n) matrix that contains values of the inactive variable that
        correspond to the given `y`

    See Also
    --------
    domains.sample_z

    Notes
    -----
    The interface for this implementation is written specifically for
    `domains.sample_z`.
    """
    m, n = W1.shape
    s = np.dot(W1, y).reshape((m, 1))

    # Build a box around z for uniform sampling
    qps = QPSolver()
    A = np.vstack((W2, -W2))
    b = np.vstack((-1 - s, -1 + s)).reshape((2 * m, 1))
    lbox, ubox = np.zeros((1, m - n)), np.zeros((1, m - n))
    for i in range(m - n):
        clb = np.zeros((m - n, 1))
        clb[i, 0] = 1.0
        lbox[0, i] = qps.linear_program_ineq(clb, A, b)[i, 0]
        cub = np.zeros((m - n, 1))
        cub[i, 0] = -1.0
        ubox[0, i] = qps.linear_program_ineq(cub, A, b)[i, 0]
    bn = BoundedNormalizer(lbox, ubox)
    Zbox = bn.unnormalize(np.random.uniform(-1.0, 1.0, size=(50 * N, m - n)))
    ind = np.all(np.dot(A, Zbox.T) >= b, axis=0)

    if np.sum(ind) >= N:
        Z = Zbox[ind, :]
        return Z[:N, :].reshape((N, m - n))
    else:
        return None
Esempio n. 3
0
def rejection_sampling_z(N, y, W1, W2):
    """A rejection sampling method for sampling the from a polytope.

    Parameters
    ----------
    N : int 
        the number of inactive variable samples
    y : ndarray 
        the value of the active variables
    W1 : ndarray 
        m-by-n matrix that contains the eigenvector bases of the n-dimensional 
        active subspace
    W2 : ndarray 
        m-by-(m-n) matrix that contains the eigenvector bases of the 
        (m-n)-dimensional inactive subspace

    Returns
    -------
    Z : ndarray
        N-by-(m-n) matrix that contains values of the inactive variable that 
        correspond to the given `y`    
    
    See Also
    --------
    domains.sample_z
    
    Notes
    -----
    The interface for this implementation is written specifically for 
    `domains.sample_z`.
    """
    m, n = W1.shape
    s = np.dot(W1, y).reshape((m, 1))

    # Build a box around z for uniform sampling
    qps = QPSolver()
    A = np.vstack((W2, -W2))
    b = np.vstack((-1-s, -1+s)).reshape((2*m, 1))
    lbox, ubox = np.zeros((1,m-n)), np.zeros((1,m-n))
    for i in range(m-n):
        clb = np.zeros((m-n,1))
        clb[i,0] = 1.0
        lbox[0,i] = qps.linear_program_ineq(clb, A, b)[i,0]
        cub = np.zeros((m-n,1))
        cub[i,0] = -1.0
        ubox[0,i] = qps.linear_program_ineq(cub, A, b)[i,0]
    bn = BoundedNormalizer(lbox, ubox)
    Zbox = bn.unnormalize(np.random.uniform(-1.0,1.0,size=(50*N,m-n)))
    ind = np.all(np.dot(A, Zbox.T) >= b, axis=0)

    if np.sum(ind) >= N:
        Z = Zbox[ind,:]
        return Z[:N,:].reshape((N,m-n))
    else:
        return None
Esempio n. 4
0
def hit_and_run_z(N, y, W1, W2):
    """
    A hit and run method for sampling the inactive variables from a polytope.

    **See Also**

    domains.sample_z
    """
    m, n = W1.shape

    # get an initial feasible point using the Chebyshev center. huge props to
    # David Gleich for showing me the Chebyshev center.
    s = np.dot(W1, y).reshape((m, 1))
    normW2 = np.sqrt( np.sum( np.power(W2, 2), axis=1 ) ).reshape((m,1))
    A = np.hstack(( np.vstack((W2, -W2.copy())), np.vstack((normW2, normW2.copy())) ))
    b = np.vstack((1-s, 1+s)).reshape((2*m, 1))
    c = np.zeros((m-n+1,1))
    c[-1] = -1.0

    qps = QPSolver()
    zc = qps.linear_program_ineq(c, -A, -b)
    z0 = zc[:-1].reshape((m-n, 1))

    # define the polytope A >= b
    s = np.dot(W1, y).reshape((m, 1))
    A = np.vstack((W2, -W2))
    b = np.vstack((-1-s, -1+s)).reshape((2*m, 1))

    # tolerance
    ztol = 1e-6
    eps0 = ztol/4.0

    Z = np.zeros((N, m-n))
    for i in range(N):

        # random direction
        bad_dir = True
        count, maxcount = 0, 50
        while bad_dir:
            d = np.random.normal(size=(m-n,1))
            bad_dir = np.any(np.dot(A, z0 + eps0*d) <= b)
            count += 1
            if count >= maxcount:
                logging.getLogger(__name__).warn('There are no more directions worth pursuing in hit and run. Got {:d} samples.'.format(i))
                Z[i:,:] = np.tile(z0, (1,N-i)).transpose()
                return Z

        # find constraints that impose lower and upper bounds on eps
        f, g = b - np.dot(A,z0), np.dot(A, d)

        # find an upper bound on the step
        min_ind = np.logical_and(g<=0, f < -np.sqrt(np.finfo(np.float).eps))
        eps_max = np.amin(f[min_ind]/g[min_ind])

        # find a lower bound on the step
        max_ind = np.logical_and(g>0, f < -np.sqrt(np.finfo(np.float).eps))
        eps_min = np.amax(f[max_ind]/g[max_ind])

        # randomly sample eps
        eps1 = np.random.uniform(eps_min, eps_max)

        # take a step along d
        z1 = z0 + eps1*d
        Z[i,:] = z1.reshape((m-n, ))

        # update temp var
        z0 = z1.copy()

    return Z
Esempio n. 5
0
def hit_and_run_z(N, y, W1, W2):
    """A hit and run method for sampling the inactive variables from a polytope.

    Parameters
    ----------
    N : int
        the number of inactive variable samples
    y : ndarray
        the value of the active variables
    W1 : ndarray
        m-by-n matrix that contains the eigenvector bases of the n-dimensional
        active subspace
    W2 : ndarray
        m-by-(m-n) matrix that contains the eigenvector bases of the
        (m-n)-dimensional inactive subspace

    Returns
    -------
    Z : ndarray
        N-by-(m-n) matrix that contains values of the inactive variable that
        correspond to the given `y`

    See Also
    --------
    domains.sample_z

    Notes
    -----
    The interface for this implementation is written specifically for
    `domains.sample_z`.
    """
    m, n = W1.shape

    # get an initial feasible point using the Chebyshev center. huge props to
    # David Gleich for showing me the Chebyshev center.
    s = np.dot(W1, y).reshape((m, 1))
    normW2 = np.sqrt(np.sum(np.power(W2, 2), axis=1)).reshape((m, 1))
    A = np.hstack((np.vstack(
        (W2, -W2.copy())), np.vstack((normW2, normW2.copy()))))
    b = np.vstack((1 - s, 1 + s)).reshape((2 * m, 1))
    c = np.zeros((m - n + 1, 1))
    c[-1] = -1.0

    qps = QPSolver()
    zc = qps.linear_program_ineq(c, -A, -b)
    z0 = zc[:-1].reshape((m - n, 1))

    # define the polytope A >= b
    s = np.dot(W1, y).reshape((m, 1))
    A = np.vstack((W2, -W2))
    b = np.vstack((-1 - s, -1 + s)).reshape((2 * m, 1))

    # tolerance
    ztol = 1e-6
    eps0 = ztol / 4.0

    Z = np.zeros((N, m - n))
    for i in range(N):

        # random direction
        bad_dir = True
        count, maxcount = 0, 50
        while bad_dir:
            d = np.random.normal(size=(m - n, 1))
            bad_dir = np.any(np.dot(A, z0 + eps0 * d) <= b)
            count += 1
            if count >= maxcount:
                Z[i:, :] = np.tile(z0, (1, N - i)).transpose()
                return Z

        # find constraints that impose lower and upper bounds on eps
        f, g = b - np.dot(A, z0), np.dot(A, d)

        # find an upper bound on the step
        min_ind = np.logical_and(g <= 0, f < -np.sqrt(np.finfo(np.float).eps))
        eps_max = np.amin(f[min_ind] / g[min_ind])

        # find a lower bound on the step
        max_ind = np.logical_and(g > 0, f < -np.sqrt(np.finfo(np.float).eps))
        eps_min = np.amax(f[max_ind] / g[max_ind])

        # randomly sample eps
        eps1 = np.random.uniform(eps_min, eps_max)

        # take a step along d
        z1 = z0 + eps1 * d
        Z[i, :] = z1.reshape((m - n, ))

        # update temp var
        z0 = z1.copy()

    return Z
Esempio n. 6
0
def hit_and_run_z(N, y, W1, W2):
    """A hit and run method for sampling the inactive variables from a polytope.

    Parameters
    ----------
    N : int 
        the number of inactive variable samples
    y : ndarray 
        the value of the active variables
    W1 : ndarray 
        m-by-n matrix that contains the eigenvector bases of the n-dimensional 
        active subspace
    W2 : ndarray 
        m-by-(m-n) matrix that contains the eigenvector bases of the 
        (m-n)-dimensional inactive subspace

    Returns
    -------
    Z : ndarray
        N-by-(m-n) matrix that contains values of the inactive variable that 
        correspond to the given `y`    
    
    See Also
    --------
    domains.sample_z
    
    Notes
    -----
    The interface for this implementation is written specifically for 
    `domains.sample_z`.
    """
    m, n = W1.shape

    # get an initial feasible point using the Chebyshev center. huge props to
    # David Gleich for showing me the Chebyshev center.
    s = np.dot(W1, y).reshape((m, 1))
    normW2 = np.sqrt( np.sum( np.power(W2, 2), axis=1 ) ).reshape((m,1))
    A = np.hstack(( np.vstack((W2, -W2.copy())), np.vstack((normW2, normW2.copy())) ))
    b = np.vstack((1-s, 1+s)).reshape((2*m, 1))
    c = np.zeros((m-n+1,1))
    c[-1] = -1.0

    qps = QPSolver()
    zc = qps.linear_program_ineq(c, -A, -b)
    z0 = zc[:-1].reshape((m-n, 1))

    # define the polytope A >= b
    s = np.dot(W1, y).reshape((m, 1))
    A = np.vstack((W2, -W2))
    b = np.vstack((-1-s, -1+s)).reshape((2*m, 1))

    # tolerance
    ztol = 1e-6
    eps0 = ztol/4.0

    Z = np.zeros((N, m-n))
    for i in range(N):

        # random direction
        bad_dir = True
        count, maxcount = 0, 50
        while bad_dir:
            d = np.random.normal(size=(m-n,1))
            bad_dir = np.any(np.dot(A, z0 + eps0*d) <= b)
            count += 1
            if count >= maxcount:
                Z[i:,:] = np.tile(z0, (1,N-i)).transpose()
                return Z

        # find constraints that impose lower and upper bounds on eps
        f, g = b - np.dot(A,z0), np.dot(A, d)

        # find an upper bound on the step
        min_ind = np.logical_and(g<=0, f < -np.sqrt(np.finfo(np.float).eps))
        eps_max = np.amin(f[min_ind]/g[min_ind])

        # find a lower bound on the step
        max_ind = np.logical_and(g>0, f < -np.sqrt(np.finfo(np.float).eps))
        eps_min = np.amax(f[max_ind]/g[max_ind])

        # randomly sample eps
        eps1 = np.random.uniform(eps_min, eps_max)

        # take a step along d
        z1 = z0 + eps1*d
        Z[i,:] = z1.reshape((m-n, ))

        # update temp var
        z0 = z1.copy()

    return Z