recorder.update(loss=losses.data.item(), acc=accuracy(outputs.data, targets.data, (1, 5)), batch_size=outputs.shape[0], cur_lr=optimizee.param_groups[0]['lr'], end=end) recorder.print_training_result(batch_idx, len(train_loader)) end = time.time() test_acc = test(net, quantized_type=quantized_type, test_loader=test_loader, dataset_name=dataset_name, n_batches_used=None) recorder.update(loss=None, acc=test_acc, batch_size=0, end=None, is_train=False) # Adjust learning rate recorder.adjust_lr(optimizer=optimizee, adjust_type=lr_adjust, epoch=epoch) best_test_acc = recorder.get_best_test_acc() if type(best_test_acc) == tuple: print('Best test top 1 acc: %.3f, top 5 acc: %.3f' % (best_test_acc[0], best_test_acc[1])) else: print('Best test acc: %.3f' % best_test_acc) recorder.close()
acc=accuracy(outputs.data, targets.data, (1, 5)), batch_size=outputs.shape[0], cur_lr=optimizer.param_groups[0]['lr'], end=end) recorder.print_training_result(batch_idx, len(train_loader)) end = time.time() test_acc = test(net=net, quantized_type=quantized_type, test_loader=test_loader, dataset_name=dataset_name, n_batches_used=100) recorder.update(loss=None, acc=test_acc, batch_size=0, end=None, is_train=False) # Adjust lr recorder.adjust_lr(optimizer=optimizer, adjust_type=args.lr_adjust, epoch=epoch) best_test_acc = recorder.get_best_test_acc() if type(best_test_acc) == tuple: print('Best test top 1 acc: %.3f, top 5 acc: %.3f' % (best_test_acc[0], best_test_acc[1])) else: print('Best test acc: %.3f' % best_test_acc) recorder.close()
if use_cuda: inputs, targets = inputs.cuda(), targets.cuda() optimizer.zero_grad() outputs = net(inputs, cur_CR) losses = nn.CrossEntropyLoss()(outputs, targets) for layer_name, layer_idx in net.layer_name_list: layer = get_layer(net, layer_idx) if isinstance(layer, FBS_CNN) or isinstance(layer, FBS_Linear): saliency = torch.sum(layer.saliency) losses += (saliency_penalty * saliency) losses.backward() optimizer.step() recorder.print_training_result(batch_idx, len(train_loader)) recorder.update(loss=losses.item(), acc=accuracy(outputs.data, targets.data, (1, 5)), batch_size=outputs.shape[0], cur_lr=optimizer.param_groups[0]['lr'], end=end) end = time.time() test_acc = test(net, CR=cur_CR, test_loader=test_loader, dataset_name=dataset_name) recorder.update(loss=None, acc=test_acc, batch_size=0, end=None, is_train=False) # Adjust lr recorder.adjust_lr(optimizer) print('Best test acc: %s' %recorder.get_best_test_acc()) recorder.close()
class Task(): def __init__(self, task_name, task_type = 'prune', optimizer_type = 'adam', save_root = None, SummaryPath = None, use_cuda = True, **kwargs): self.task_name = task_name self.task_type = task_type # prune, soft-quantize self.model_name, self.dataset_name = task_name.split('-') self.ratio = 'sample' if self.dataset_name in ['CIFARS'] else -1 ####### # Net # ####### if task_type == 'prune': if self.model_name == 'ResNet20': if self.dataset_name in ['CIFAR10', 'CIFARS']: self.net = resnet20_cifar() elif self.dataset_name == 'STL10': self.net = resnet20_stl() else: raise NotImplementedError elif self.model_name == 'ResNet32': if self.dataset_name in ['CIFAR10', 'CIFARS']: self.net = resnet32_cifar() elif self.dataset_name == 'STL10': self.net = resnet32_stl() else: raise NotImplementedError elif self.model_name == 'ResNet56': if self.dataset_name in ['CIFAR10', 'CIFARS']: self.net = resnet56_cifar() elif self.dataset_name == 'CIFAR100': self.net = resnet56_cifar(num_classes=100) elif self.dataset_name == 'STL10': self.net = resnet56_stl() else: raise NotImplementedError elif self.model_name == 'ResNet18': if self.dataset_name == 'ImageNet': self.net = resnet18() else: raise NotImplementedError elif self.model_name == 'vgg11': self.net = vgg11() if self.dataset_name == 'CIFAR10' else vgg11_stl10() else: print(self.model_name, self.dataset_name) raise NotImplementedError elif task_type == 'soft-quantize': if self.model_name == 'ResNet20': if self.dataset_name in ['CIFAR10', 'CIFARS']: self.net = soft_quantized_resnet20_cifar() elif self.dataset_name in ['STL10']: self.net = soft_quantized_resnet20_stl() else: raise NotImplementedError else: raise ('Task type not defined.') self.meta_opt_flag = True # True for enabling meta leraning ############## # Meta Prune # ############## self.mask_dict = dict() self.meta_grad_dict = dict() self.meta_hidden_state_dict = dict() ###################### # Meta Soft Quantize # ###################### self.quantized = 0 # Quantized type self.alpha_dict = dict() self.alpha_hidden_dict = dict() self.sq_rate = 0 self.s_rate = 0 self.q_rate = 0 ########## # Record # ########## self.dataset_type = 'large' if self.dataset_name in ['ImageNet'] else 'small' self.SummaryPath = SummaryPath self.save_root = save_root self.recorder = Recorder(self.SummaryPath, self.dataset_name, self.task_name) #################### # Load Pre-trained # #################### self.pretrain_path = '%s/%s-pretrain.pth' %(self.save_root, self.task_name) self.net.load_state_dict(torch.load(self.pretrain_path)) print('Load pre-trained model from %s' %self.pretrain_path) if use_cuda: self.net.cuda() # Optimizer for this task if optimizer_type in ['Adam', 'adam']: self.optimizer = Adam(self.net.parameters(), lr=1e-3) else: self.optimizer = SGD(self.net.parameters()) if self.dataset_name == 'ImageNet': try: self.train_loader = get_lmdb_imagenet('train', 128) self.test_loader = get_lmdb_imagenet('test', 100) except: self.train_loader = get_dataloader(self.dataset_name, 'train', 128) self.test_loader = get_dataloader(self.dataset_name, 'test', 100) else: self.train_loader = get_dataloader(self.dataset_name, 'train', 128, ratio=self.ratio) self.test_loader = get_dataloader(self.dataset_name, 'test', 128) self.iter_train_loader = yielder(self.train_loader) # For shared # self.loss = 0 # self.niter = 0 # Overall iteration record # self.test_loss = 0 # self.smallest_training_loss = 1e9 # self.stop = False # Whether to stop training # # # For CIFAR dataset # # self.train_acc = AverageMeter() # self.total = 0 # Number of batches used in training # self.n_batch = 0 # Number of batches used in training # self.test_acc = 0 # self.best_test_acc = 0 # self.ascend_count = 0 # # # For ImageNet dataset # # self.loss = AverageMeter() # self.top1 = AverageMeter() # self.top5 = AverageMeter() # self.batch_time = AverageMeter() # self.data_time = AverageMeter() # self.test_acc_top1 = 0 # self.test_acc_top5 = 0 # self.best_test_acc_top1 = 0 # self.best_test_acc_top5 = 0 # # ####################### # # Parameters for Meta # # ####################### # self.mask_dict = dict() # self.meta_grad_dict = dict() # self.meta_hidden_state_dict = dict() # # ########################### # # Open File for Recording # # ########################### # if self.dataset_type == 'small': # self.loss_record = open('%s/%s-loss.txt' %(self.SummaryPath, self.task_name), 'w+') # self.train_acc_record = open('%s/%s-train-acc.txt' %(self.SummaryPath, self.task_name), 'w+') # self.test_acc_record = open('%s/%s-test-acc.txt' %(self.SummaryPath, self.task_name), 'w+') # self.lr_record = open('%s/%s-lr.txt' %(self.SummaryPath, self.task_name), 'w+') # # print('Initialize %s' %(self.task_name)) # else: # self.loss_record = open('%s/%s-loss.txt' % (self.SummaryPath, self.task_name), 'w+') # self.train_top1_acc_record = open('%s/%s-train-top1-acc.txt' % (self.SummaryPath, self.task_name), 'w+') # self.train_top5_acc_record = open('%s/%s-train-top5-acc.txt' % (self.SummaryPath, self.task_name), 'w+') # self.test_top1_acc_record = open('%s/%s-test-top1-acc.txt' % (self.SummaryPath, self.task_name), 'w+') # self.test_top5_acc_record = open('%s/%s-test-top5-acc.txt' % (self.SummaryPath, self.task_name), 'w+') # self.lr_record = open('%s/%s-lr.txt' % (self.SummaryPath, self.task_name), 'w+') def train(self): self.net.train() def eval(self): self.net.eval() def zero_grad(self): self.optimizer.zero_grad() def step(self): self.optimizer.step() def update_record_performance(self, loss, acc, batch_size=0, lr = 1e-3, end=None, is_train = True): self.recorder.update(loss=loss, acc=acc, batch_size=batch_size, cur_lr=lr, end=end, is_train=is_train) # if is_train: # # self.loss += loss # self.n_batch += 1 # self.total += batch_size # self.niter += 1 # # if self.dataset_type == 'small': # self.top1.update(acc[0], batch_size) # # self.loss_record.write('%d, %.8f\n' % (self.niter, self.loss / self.n_batch)) # self.train_acc_record.write('%d, %.3f\n' % (self.niter, self.top1.avg)) # self.lr_record.write('%d, %e\n' % (self.niter, self.optimizer.param_groups[0]['lr'])) # # self.flush([self.loss_record, self.train_acc_record, self.lr_record]) # # else: # self.batch_time.update(time.time() - end) # self.top1.update(acc[0], batch_size) # self.top5.update(acc[1], batch_size) # # self.loss_record.write('%d, %.8f\n' % (self.niter, self.loss / self.n_batch)) # self.train_top1_acc_record.write('%d, %.3f\n' % (self.niter, self.top1.avg)) # self.train_top5_acc_record.write('%d, %.3f\n' % (self.niter, self.top5.avg)) # self.lr_record.write('%d, %ef\n' % (self.niter, self.optimizer.param_groups[0]['lr'])) # # self.flush([self.loss_record, self.train_top1_acc_record, self.train_top5_acc_record, self.lr_record]) # # else: # self.test_loss = loss # # if self.dataset_type == 'small': # # self.test_acc = acc # # if self.best_test_acc < self.test_acc: # self.best_test_acc = self.test_acc # print('[%s] Best test acc' %self.task_name) # # self.save(self.SummaryPath) # # self.test_acc_record.write('%d, %.3f\n' % (self.niter, self.test_acc)) # self.flush([self.test_acc_record]) # # else: # # self.test_acc_top1, self.test_acc_top5 = acc[0], acc[1] # # if self.best_test_acc_top1 < self.test_acc_top1 or self.best_test_acc_top5 < self.test_acc_top5: # self.best_test_acc_top1 = self.test_acc_top1 # self.best_test_acc_top5 = self.test_acc_top5 # print('[%s] Best test acc' % self.task_name) # # self.save(self.SummaryPath) # # self.test_top1_acc_record.write('%d, %.3f\n' % (self.niter, self.test_acc_top1)) # self.test_top5_acc_record.write('%d, %.3f\n' % (self.niter, self.test_acc_top5)) # # self.flush([self.test_top1_acc_record, self.test_top5_acc_record]) def reset_performance(self): # self.loss = 0 # # if self.dataset_type == 'small': # self.loss = 0 # # self.train_acc.reset() # self.top1.reset() # self.total = 0 # self.n_batch = 0 # else: # self.best_test_acc_top1 = 0 # self.best_test_acc_top5 = 0 # self.top1.reset() # self.top5.reset() # self.batch_time.reset() self.recorder.reset_performance() # def set_best_acc(self, test_acc): # self.best_test_acc = test_acc def save(self, save_root): torch.save(self.net.state_dict(), '%s/%s-net.pth' %(save_root, self.task_name)) def get_best_test_acc(self): # if self.dataset_type == 'small': # return self.best_test_acc # else: # return self.best_test_acc_top1, self.best_test_acc_top5 return self.recorder.get_best_test_acc() def flush(self, file_list=None): for file in file_list: file.flush() def close(self): # if self.dataset_type == 'small': # self.loss_record.close() # self.train_acc_record.close() # self.test_acc_record.close() # self.lr_record.close() # else: # self.loss_record.close() # self.train_top1_acc_record.close() # self.train_top5_acc_record.close() # self.test_top1_acc_record.close() # self.test_top5_acc_record.close() # self.lr_record.close() self.recorder.close() def adjust_lr(self, adjust_type): # if self.dataset_type == 'small': # if self.loss > self.smallest_training_loss: # self.ascend_count += 1 # else: # self.smallest_training_loss = self.loss # self.ascend_count = 0 # # if self.ascend_count >= 3: # self.ascend_count = 0 # self.optimizer.param_groups[0]['lr'] *= 0.1 # if self.optimizer.param_groups[0]['lr'] < 1e-6: # self.stop = True # # print('[%s] Current training loss: %.3f[%.3f], ascend count: %d' # %(self.task_name, self.loss, self.smallest_training_loss, self.ascend_count)) # print('---------------------------------------------------') # else: # raise NotImplementedError self.recorder.adjust_lr(self.optimizer)