Esempio n. 1
0
        recorder.update(loss=losses.data.item(),
                        acc=accuracy(outputs.data, targets.data, (1, 5)),
                        batch_size=outputs.shape[0],
                        cur_lr=optimizee.param_groups[0]['lr'],
                        end=end)

        recorder.print_training_result(batch_idx, len(train_loader))
        end = time.time()

    test_acc = test(net,
                    quantized_type=quantized_type,
                    test_loader=test_loader,
                    dataset_name=dataset_name,
                    n_batches_used=None)
    recorder.update(loss=None,
                    acc=test_acc,
                    batch_size=0,
                    end=None,
                    is_train=False)

    # Adjust learning rate
    recorder.adjust_lr(optimizer=optimizee, adjust_type=lr_adjust, epoch=epoch)

best_test_acc = recorder.get_best_test_acc()
if type(best_test_acc) == tuple:
    print('Best test top 1 acc: %.3f, top 5 acc: %.3f' %
          (best_test_acc[0], best_test_acc[1]))
else:
    print('Best test acc: %.3f' % best_test_acc)
recorder.close()
                        acc=accuracy(outputs.data, targets.data, (1, 5)),
                        batch_size=outputs.shape[0],
                        cur_lr=optimizer.param_groups[0]['lr'],
                        end=end)

        recorder.print_training_result(batch_idx, len(train_loader))
        end = time.time()

    test_acc = test(net=net,
                    quantized_type=quantized_type,
                    test_loader=test_loader,
                    dataset_name=dataset_name,
                    n_batches_used=100)
    recorder.update(loss=None,
                    acc=test_acc,
                    batch_size=0,
                    end=None,
                    is_train=False)

    # Adjust lr
    recorder.adjust_lr(optimizer=optimizer,
                       adjust_type=args.lr_adjust,
                       epoch=epoch)

best_test_acc = recorder.get_best_test_acc()
if type(best_test_acc) == tuple:
    print('Best test top 1 acc: %.3f, top 5 acc: %.3f' %
          (best_test_acc[0], best_test_acc[1]))
else:
    print('Best test acc: %.3f' % best_test_acc)
recorder.close()
Esempio n. 3
0
            if use_cuda:
                inputs, targets = inputs.cuda(), targets.cuda()

            optimizer.zero_grad()
            outputs = net(inputs, cur_CR)
            losses = nn.CrossEntropyLoss()(outputs, targets)

            for layer_name, layer_idx in net.layer_name_list:
                layer = get_layer(net, layer_idx)
                if isinstance(layer, FBS_CNN) or isinstance(layer, FBS_Linear):
                    saliency = torch.sum(layer.saliency)
                    losses += (saliency_penalty * saliency)

            losses.backward()
            optimizer.step()

            recorder.print_training_result(batch_idx, len(train_loader))
            recorder.update(loss=losses.item(), acc=accuracy(outputs.data, targets.data, (1, 5)),
                            batch_size=outputs.shape[0], cur_lr=optimizer.param_groups[0]['lr'], end=end)

            end = time.time()

        test_acc = test(net, CR=cur_CR, test_loader=test_loader, dataset_name=dataset_name)

        recorder.update(loss=None, acc=test_acc, batch_size=0, end=None, is_train=False)
        # Adjust lr
        recorder.adjust_lr(optimizer)

print('Best test acc: %s' %recorder.get_best_test_acc())
recorder.close()
Esempio n. 4
0
class Task():

    def __init__(self, task_name, task_type = 'prune', optimizer_type = 'adam',
                 save_root = None, SummaryPath = None, use_cuda = True, **kwargs):

        self.task_name = task_name
        self.task_type = task_type # prune, soft-quantize
        self.model_name, self.dataset_name = task_name.split('-')
        self.ratio = 'sample' if self.dataset_name in ['CIFARS'] else -1

        #######
        # Net #
        #######
        if task_type == 'prune':
            if self.model_name == 'ResNet20':
                if self.dataset_name in ['CIFAR10', 'CIFARS']:
                    self.net = resnet20_cifar()
                elif self.dataset_name == 'STL10':
                    self.net = resnet20_stl()
                else:
                    raise NotImplementedError
            elif self.model_name == 'ResNet32':
                if self.dataset_name in ['CIFAR10', 'CIFARS']:
                    self.net = resnet32_cifar()
                elif self.dataset_name == 'STL10':
                    self.net = resnet32_stl()
                else:
                    raise NotImplementedError
            elif self.model_name == 'ResNet56':
                if self.dataset_name in ['CIFAR10', 'CIFARS']:
                    self.net = resnet56_cifar()
                elif self.dataset_name == 'CIFAR100':
                    self.net = resnet56_cifar(num_classes=100)
                elif self.dataset_name == 'STL10':
                    self.net = resnet56_stl()
                else:
                    raise NotImplementedError
            elif self.model_name == 'ResNet18':
                if self.dataset_name == 'ImageNet':
                    self.net = resnet18()
                else:
                    raise NotImplementedError
            elif self.model_name == 'vgg11':
                self.net = vgg11() if self.dataset_name == 'CIFAR10' else vgg11_stl10()
            else:
                print(self.model_name, self.dataset_name)
                raise NotImplementedError
        elif task_type == 'soft-quantize':
            if self.model_name == 'ResNet20':
                if self.dataset_name in ['CIFAR10', 'CIFARS']:
                    self.net = soft_quantized_resnet20_cifar()
                elif self.dataset_name in ['STL10']:
                    self.net = soft_quantized_resnet20_stl()
            else:
                raise NotImplementedError
        else:
            raise ('Task type not defined.')


        self.meta_opt_flag = True # True for enabling meta leraning

        ##############
        # Meta Prune #
        ##############
        self.mask_dict = dict()
        self.meta_grad_dict = dict()
        self.meta_hidden_state_dict = dict()

        ######################
        # Meta Soft Quantize #
        ######################
        self.quantized = 0 # Quantized type
        self.alpha_dict = dict()
        self.alpha_hidden_dict = dict()
        self.sq_rate = 0
        self.s_rate = 0
        self.q_rate = 0

        ##########
        # Record #
        ##########
        self.dataset_type = 'large' if self.dataset_name in ['ImageNet'] else 'small'
        self.SummaryPath = SummaryPath
        self.save_root = save_root

        self.recorder = Recorder(self.SummaryPath, self.dataset_name, self.task_name)

        ####################
        # Load Pre-trained #
        ####################
        self.pretrain_path = '%s/%s-pretrain.pth' %(self.save_root, self.task_name)
        self.net.load_state_dict(torch.load(self.pretrain_path))
        print('Load pre-trained model from %s' %self.pretrain_path)

        if use_cuda:
            self.net.cuda()

        # Optimizer for this task
        if optimizer_type in ['Adam', 'adam']:
            self.optimizer = Adam(self.net.parameters(), lr=1e-3)
        else:
            self.optimizer = SGD(self.net.parameters())

        if self.dataset_name == 'ImageNet':
            try:
                self.train_loader = get_lmdb_imagenet('train', 128)
                self.test_loader = get_lmdb_imagenet('test', 100)
            except:
                self.train_loader = get_dataloader(self.dataset_name, 'train', 128)
                self.test_loader = get_dataloader(self.dataset_name, 'test', 100)
        else:
            self.train_loader = get_dataloader(self.dataset_name, 'train', 128, ratio=self.ratio)
            self.test_loader = get_dataloader(self.dataset_name, 'test', 128)

        self.iter_train_loader = yielder(self.train_loader)
        # For shared
        # self.loss = 0
        # self.niter = 0 # Overall iteration record
        # self.test_loss = 0
        # self.smallest_training_loss = 1e9
        # self.stop = False # Whether to stop training
        #
        # # For CIFAR dataset
        # # self.train_acc = AverageMeter()
        # self.total = 0 # Number of batches used in training
        # self.n_batch = 0 # Number of batches used in training
        # self.test_acc = 0
        # self.best_test_acc = 0
        # self.ascend_count = 0
        #
        # # For ImageNet dataset
        # # self.loss = AverageMeter()
        # self.top1 = AverageMeter()
        # self.top5 = AverageMeter()
        # self.batch_time = AverageMeter()
        # self.data_time = AverageMeter()
        # self.test_acc_top1 = 0
        # self.test_acc_top5 = 0
        # self.best_test_acc_top1 = 0
        # self.best_test_acc_top5 = 0
        #
        # #######################
        # # Parameters for Meta #
        # #######################
        # self.mask_dict = dict()
        # self.meta_grad_dict = dict()
        # self.meta_hidden_state_dict = dict()
        #
        # ###########################
        # # Open File for Recording #
        # ###########################
        # if self.dataset_type == 'small':
        #     self.loss_record = open('%s/%s-loss.txt' %(self.SummaryPath, self.task_name), 'w+')
        #     self.train_acc_record = open('%s/%s-train-acc.txt' %(self.SummaryPath, self.task_name), 'w+')
        #     self.test_acc_record = open('%s/%s-test-acc.txt' %(self.SummaryPath, self.task_name), 'w+')
        #     self.lr_record = open('%s/%s-lr.txt' %(self.SummaryPath, self.task_name), 'w+')
        #     # print('Initialize %s' %(self.task_name))
        # else:
        #     self.loss_record = open('%s/%s-loss.txt' % (self.SummaryPath, self.task_name), 'w+')
        #     self.train_top1_acc_record = open('%s/%s-train-top1-acc.txt' % (self.SummaryPath, self.task_name), 'w+')
        #     self.train_top5_acc_record = open('%s/%s-train-top5-acc.txt' % (self.SummaryPath, self.task_name), 'w+')
        #     self.test_top1_acc_record = open('%s/%s-test-top1-acc.txt' % (self.SummaryPath, self.task_name), 'w+')
        #     self.test_top5_acc_record = open('%s/%s-test-top5-acc.txt' % (self.SummaryPath, self.task_name), 'w+')
        #     self.lr_record = open('%s/%s-lr.txt' % (self.SummaryPath, self.task_name), 'w+')

    def train(self):
        self.net.train()

    def eval(self):
        self.net.eval()

    def zero_grad(self):
        self.optimizer.zero_grad()

    def step(self):
        self.optimizer.step()

    def update_record_performance(self, loss, acc, batch_size=0, lr = 1e-3, end=None, is_train = True):

        self.recorder.update(loss=loss, acc=acc, batch_size=batch_size, cur_lr=lr, end=end, is_train=is_train)

        # if is_train:
        #
        #     self.loss += loss
        #     self.n_batch += 1
        #     self.total += batch_size
        #     self.niter += 1
        #
        #     if self.dataset_type == 'small':
        #         self.top1.update(acc[0], batch_size)
        #
        #         self.loss_record.write('%d, %.8f\n' % (self.niter, self.loss / self.n_batch))
        #         self.train_acc_record.write('%d, %.3f\n' % (self.niter, self.top1.avg))
        #         self.lr_record.write('%d, %e\n' % (self.niter, self.optimizer.param_groups[0]['lr']))
        #
        #         self.flush([self.loss_record, self.train_acc_record, self.lr_record])
        #
        #     else:
        #         self.batch_time.update(time.time() - end)
        #         self.top1.update(acc[0], batch_size)
        #         self.top5.update(acc[1], batch_size)
        #
        #         self.loss_record.write('%d, %.8f\n' % (self.niter, self.loss / self.n_batch))
        #         self.train_top1_acc_record.write('%d, %.3f\n' % (self.niter, self.top1.avg))
        #         self.train_top5_acc_record.write('%d, %.3f\n' % (self.niter, self.top5.avg))
        #         self.lr_record.write('%d, %ef\n' % (self.niter, self.optimizer.param_groups[0]['lr']))
        #
        #         self.flush([self.loss_record, self.train_top1_acc_record, self.train_top5_acc_record, self.lr_record])
        #
        # else:
        #     self.test_loss = loss
        #
        #     if self.dataset_type == 'small':
        #
        #         self.test_acc = acc
        #
        #         if self.best_test_acc < self.test_acc:
        #             self.best_test_acc = self.test_acc
        #             print('[%s] Best test acc' %self.task_name)
        #             # self.save(self.SummaryPath)
        #
        #         self.test_acc_record.write('%d, %.3f\n' % (self.niter, self.test_acc))
        #         self.flush([self.test_acc_record])
        #
        #     else:
        #
        #         self.test_acc_top1, self.test_acc_top5 = acc[0], acc[1]
        #
        #         if self.best_test_acc_top1 < self.test_acc_top1 or self.best_test_acc_top5 < self.test_acc_top5:
        #             self.best_test_acc_top1 = self.test_acc_top1
        #             self.best_test_acc_top5 = self.test_acc_top5
        #             print('[%s] Best test acc' % self.task_name)
        #             # self.save(self.SummaryPath)
        #
        #         self.test_top1_acc_record.write('%d, %.3f\n' % (self.niter, self.test_acc_top1))
        #         self.test_top5_acc_record.write('%d, %.3f\n' % (self.niter, self.test_acc_top5))
        #
        #         self.flush([self.test_top1_acc_record, self.test_top5_acc_record])


    def reset_performance(self):

        # self.loss = 0
        #
        # if self.dataset_type == 'small':
        #     self.loss = 0
        #     # self.train_acc.reset()
        #     self.top1.reset()
        #     self.total = 0
        #     self.n_batch = 0
        # else:
        #     self.best_test_acc_top1 = 0
        #     self.best_test_acc_top5 = 0
        #     self.top1.reset()
        #     self.top5.reset()
        #     self.batch_time.reset()
        self.recorder.reset_performance()


    # def set_best_acc(self, test_acc):
    #     self.best_test_acc = test_acc


    def save(self, save_root):
        torch.save(self.net.state_dict(), '%s/%s-net.pth' %(save_root, self.task_name))

    def get_best_test_acc(self):

        # if self.dataset_type == 'small':
        #     return self.best_test_acc
        # else:
        #     return self.best_test_acc_top1, self.best_test_acc_top5
        return self.recorder.get_best_test_acc()

    def flush(self, file_list=None):

        for file in file_list:
            file.flush()

    def close(self):

        # if self.dataset_type == 'small':
        #     self.loss_record.close()
        #     self.train_acc_record.close()
        #     self.test_acc_record.close()
        #     self.lr_record.close()
        # else:
        #     self.loss_record.close()
        #     self.train_top1_acc_record.close()
        #     self.train_top5_acc_record.close()
        #     self.test_top1_acc_record.close()
        #     self.test_top5_acc_record.close()
        #     self.lr_record.close()
        self.recorder.close()

    def adjust_lr(self, adjust_type):

        # if self.dataset_type == 'small':
        #     if self.loss > self.smallest_training_loss:
        #         self.ascend_count += 1
        #     else:
        #         self.smallest_training_loss = self.loss
        #         self.ascend_count = 0
        #
        #     if self.ascend_count >= 3:
        #         self.ascend_count = 0
        #         self.optimizer.param_groups[0]['lr'] *= 0.1
        #         if self.optimizer.param_groups[0]['lr'] < 1e-6:
        #             self.stop = True
        #
        #     print('[%s] Current training loss: %.3f[%.3f], ascend count: %d'
        #           %(self.task_name, self.loss, self.smallest_training_loss, self.ascend_count))
        #     print('---------------------------------------------------')
        # else:
        #     raise NotImplementedError

        self.recorder.adjust_lr(self.optimizer)