from utils.settings_builder import Settings # ----------------------------------------------------------------------------- # ***************** # ***************** json_path = "settings/settings_example.json" json_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), json_path) # ***************** # ***************** timestamp = datetime.datetime.fromtimestamp(int( time.time())).strftime('%Y_%m_%d_%H_%M_%S') s = Settings() s.load(json_path) base_path = s.base_path version = s.config["version"] # final merged output merge_out_path = os.path.join( base_path, "output/s1_merge/merge_{}_{}.csv".format(version, timestamp)) # find input data based on models version tag regex_str = os.path.join(base_path, "output/s1_train/train_*_{}.json".format(version)) regex_search = glob.glob(regex_str) qlist = regex_search
# ***************** json_path = "settings/settings_example.json" json_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), json_path) # ***************** # ***************** print('-' * 40) print("\nInitializing...") timestamp = datetime.datetime.fromtimestamp(int( time.time())).strftime('%Y_%m_%d_%H_%M_%S') # date_str = datetime.datetime.now().strftime("%Y%m%d") s = Settings() s.load(json_path) base_path = s.base_path s.set_param_count() s.build_dirs() job_dir = os.path.basename(os.path.dirname(json_path)) shutil.copyfile( json_path, os.path.join( base_path, "output/s0_settings/settings_{}_{}.json".format(job_dir, timestamp))) s.save_params() tasks = s.hashed_iter()
from utils.settings_builder import Settings from utils.data_prep import make_dir from utils.create_grid import PointGrid # from utils.load_ntl_data import NTL_Reader # ***************** # ***************** json_path = "settings/settings_example.json" json_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), json_path) # ***************** # ***************** s = Settings() s.load(json_path) s.build_dirs() boundary_path = os.path.join(s.base_path, "data/boundary", s.data["static"]["grid_boundary_file"]) pixel_size = s.data["third_stage"]["grid"]["pixel_size"] # ntl_calibrated = s.data["third_stage"]["predict"]["ntl_calibrated"] # ntl_year = s.data["third_stage"]["predict"]["ntl_year"] # ntl_dim = s.data["third_stage"]["predict"]["ntl_dim"] surface_tag = s.config["surface_tag"] # fname = os.path.basename(json_path, ".json") fname = ".".join(os.path.basename(boundary_path).split(".")[:-1])
import sklearn.metrics import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from utils.settings_builder import Settings # ***************** # ***************** json_path = "settings/nigeria_acled.json" # json_path = "settings/settings_example.json" # json_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), json_path) # ***************** # ***************** s = Settings() s.load(json_path) predict_settings = s.data[s.config["predict"]] predict_hash = s.build_hash(predict_settings, nchar=7) tasks = s.hashed_iter() def make_dir(path): try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise
try: return self.fp / float(self.fp + self.tn) except: return None timestamp = datetime.datetime.fromtimestamp(int( time.time())).strftime('%Y_%m_%d_%H_%M_%S') json_path_list = glob.glob("../*acled/settings/nigeria_acled.json") # group versions of same temporal version_groups = {} for json_path in json_path_list: temporal = json_path.split("/")[1].split("_")[1] s = Settings() s.load(json_path) tag = "{}_{}".format(s.config["version"], s.config["predict_tag"]) if temporal not in version_groups: version_groups[temporal] = [] version_groups[temporal].append(json_path) cm_list = [] thresh_val_list = [0.3, 0.35, 0.4, 0.45, 0.5] for ix, temporal in enumerate(version_groups.keys()): # ============== # WARNING: THIS WILL NOT CURRENTLY WORK IF YOU HAVE MORE THAN ONE PARAM COMBO # it will just put all the params from same temporal group in same plot # ==============
from utils.settings_builder import Settings from utils.model_prep import (pearson_r2, ModelHelper, run_cv, find_best_alpha, predict_inner_test_fold, scale_features, train, train_and_predict, run_models, run_tasks) # ***************** # ***************** json_path = "settings/settings_example.json" json_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), json_path) # ***************** # ***************** s = Settings() s.load(json_path) base_path = s.base_path s.build_dirs() mode = s.config["second_stage_mode"] predict_hash = s.build_hash(s.data[s.config["predict"]], nchar=7) # timestamp = datetime.datetime.fromtimestamp(int(time.time())).strftime( # '%Y_%m_%d_%H_%M_%S') mh = ModelHelper(settings=s) tasks = s.hashed_iter()