def evaluate_decomp(name, level, init_structure, split_id, sample_id, root):
    """Given a posterior sample, evaluate the predictive likelihood on the test rows and columns."""
    params = storage.load(params_file(name))
    data_matrix = storage.load(data_file(name))
    splits = storage.load(splits_file(name))
    train_rows, train_cols, test_rows, test_cols = splits[split_id]

    X_train = data_matrix[train_rows[:, nax], train_cols[nax, :]]
    X_row_test = data_matrix[test_rows[:, nax], train_cols[nax, :]]
    X_col_test = data_matrix[train_rows[:, nax], test_cols[nax, :]]

    if level == 1:
        init_row_loglik = init_col_loglik = None
    else:
        if params.save_samples:
            init_row_loglik, init_col_loglik = storage.load(scores_file(name, level-1, init_structure,
                                                                        split_id, sample_id))
        else:
            init_row_loglik, init_col_loglik = storage.load(init_scores_file(name, level, init_structure,
                                                                             split_id, sample_id))

    row_loglik, col_loglik = scoring.evaluate_model(X_train, root, X_row_test, X_col_test,
                                                    init_row_loglik=init_row_loglik,
                                                    init_col_loglik=init_col_loglik,
                                                    num_steps_ais=params.num_steps_ais,
                                                    max_dim=params.max_dim_predictive)
    return row_loglik, col_loglik
def collect_scores(name, level, structure):
    """Collect the held-out predictive log-likelihood scores for all CV splits and
    order them according to the indices of the original data matrix."""
    params = storage.load(params_file(name))
    splits = storage.load(splits_file(name))

    row_loglik_all = []
    col_loglik_all = []
    failed = False

    for split_id, (train_rows, train_cols, test_rows, test_cols) in enumerate(splits):
        row_loglik_curr, col_loglik_curr = [], []
        num_samples = params.num_samples
        for sample_id in range(num_samples):
            try:
                row_loglik_single, col_loglik_single = storage.load(scores_file(name, level, structure, split_id, sample_id))
            except:
                row_loglik_single = np.nan * np.ones(len(test_rows))
                col_loglik_single = np.nan * np.ones(len(test_cols))
                failed = True
            row_loglik_curr.append(row_loglik_single)
            col_loglik_curr.append(col_loglik_single)

        row_loglik_all.append(np.array(row_loglik_curr))
        col_loglik_all.append(np.array(col_loglik_curr))

    if failed:
        print termcolor.colored('    failed: %s' % grammar.pretty_print(structure), 'red')

    storage.dump((row_loglik_all, col_loglik_all), collected_scores_file(name, level, structure))
def structureless_scores(name):
    """Evaluate the probability of the structureless model G on held-out data."""
    data_matrix = storage.load(data_file(name))
    if isinstance(data_matrix, recursive.Decomp):
        data_matrix = observations.DataMatrix.from_real_values(data_matrix.root.value())
    splits = storage.load(splits_file(name))
    params = storage.load(params_file(name))

    row_loglik = np.array([])
    col_loglik = np.array([])
    num_entries = 0

    for train_rows, train_cols, test_rows, test_cols in splits:
        X_train = data_matrix[train_rows[:, nax], train_cols[nax, :]]
        X_row_test = data_matrix[test_rows[:, nax], train_cols[nax, :]]
        X_col_test = data_matrix[train_rows[:, nax], test_cols[nax, :]]

        curr_row_loglik = scoring.no_structure_row_loglik(
            X_train[:, :params.max_dim_predictive], X_row_test[:, :params.max_dim_predictive])
        row_loglik = np.concatenate([row_loglik, curr_row_loglik])
        
        curr_col_loglik = scoring.no_structure_col_loglik(
            X_train[:params.max_dim_predictive, :], X_col_test[:params.max_dim_predictive, :])
        col_loglik = np.concatenate([col_loglik, curr_col_loglik])

        num_entries += train_cols.size * test_rows.size + train_rows.size * test_cols.size

    return PredictiveLikelihoodScores(row_loglik, col_loglik, num_entries)
def compute_scores(name, level, structure):
    """Average together the predictive likelihood scores over all the posterior samples,
    and return a PredictiveLikelihoodScores instance."""
    if level == 0:
        if structure != 'g': raise RuntimeError('Invalid structure for level 0: %s' % structure)
        return structureless_scores(name)

    params = storage.load(params_file(name))
    num_samples = params.num_samples
    splits = storage.load(splits_file(name))

    row_loglik_all, col_loglik_all = storage.load(collected_scores_file(name, level, structure))

    # treat errors as zeros (assume I've already checked that all samples for valid models are completed)
    row_loglik_all = [np.where(np.isnan(rl), -np.infty, rl) for rl in row_loglik_all]
    col_loglik_all = [np.where(np.isnan(cl), -np.infty, cl) for cl in col_loglik_all]

    row_loglik_vec, col_loglik_vec = np.array([]), np.array([])
    num_entries = 0
    for split_id, (train_rows, train_cols, test_rows, test_cols) in enumerate(splits):
        row_loglik_curr, col_loglik_curr = row_loglik_all[split_id], col_loglik_all[split_id]
        row_loglik_vec = np.concatenate([row_loglik_vec, np.logaddexp.reduce(row_loglik_curr, axis=0) - np.log(num_samples)])
        col_loglik_vec = np.concatenate([col_loglik_vec, np.logaddexp.reduce(col_loglik_curr, axis=0) - np.log(num_samples)])
        num_entries += train_cols.size * test_rows.size + train_rows.size * test_cols.size

    return PredictiveLikelihoodScores(row_loglik_vec, col_loglik_vec, num_entries)
def print_failures(prefix, outfile=sys.stdout):
    params = load_params(prefix)
    failures = []
    for level in range(1, params.search_depth + 1):
        ok_counts = collections.defaultdict(int)
        fail_counts = collections.defaultdict(int)
        for expt_name in all_experiment_names(prefix):
            for _, structure in storage.load(experiments.structures_file(expt_name, level)):
                for split_id in range(params.num_splits):
                    for sample_id in range(params.num_samples):
                        ok = False
                        fname = experiments.scores_file(expt_name, level, structure, split_id, sample_id)
                        if storage.exists(fname):
                            row_loglik, col_loglik = storage.load(fname)
                            if np.all(np.isfinite(row_loglik)) and np.all(np.isfinite(col_loglik)):
                                ok = True

                        if ok:
                            ok_counts[structure] += 1
                        else:
                            fail_counts[structure] += 1

        for structure in fail_counts:
            if ok_counts[structure] > 0:
                failures.append(presentation.Failure(structure, level, False))
            else:
                failures.append(presentation.Failure(structure, level, True))

    presentation.print_failed_structures(failures, outfile)
def fit_winning_sequence(name, sample_id):
    """After the sequence of models is identified, sample factorizations from each of the models on the full
    data matrix."""
    data_matrix = storage.load(data_file(name))
    sequence = sequence_of_structures(name)
    params = storage.load(params_file(name))
    decomps = recursive.fit_sequence(sequence, data_matrix, gibbs_steps=params.gibbs_steps)
    storage.dump(decomps, winning_samples_file(name, sample_id))
def evaluation_jobs(name, level):
    params = storage.load(params_file(name))
    structures = storage.load(structures_file(name, level))
    
    return [('eval_job', name, level, pretty_print(init_s), pretty_print(s), split_id, sample_id)
            for init_s, s in structures
            for split_id in range(params.num_splits)
            for sample_id in range(params.num_samples)]
def winning_structures(name, level):
    """Determine the set of structures to expand."""
    if level == 0:
        return ['g']
    params = storage.load(params_file(name))
    structures = storage.load(structures_file(name, level))
    structures = [s for _, s in structures]
    structures = filter(lambda s: compute_scores(name, level, s) is not None, structures)    # ignore failures
    structures.sort(key=lambda s: compute_scores(name, level, s).total(), reverse=True)
    return structures[:params.num_expand]
def print_model_sequence(name, outfile=sys.stdout):
    params = storage.load(params_file(name))
    prev_structure = 'g'
    model_scores = []
    for level in range(1, params.search_depth + 1):
        curr_structure = storage.load(winning_structure_file(name, level))[0]
        result = compute_scores(name, level, curr_structure)
        prev_result = compute_scores(name, level-1, prev_structure)
        model_scores.append(get_model_score(curr_structure, result, prev_result))
        prev_structure = curr_structure
    presentation.print_model_sequence(model_scores, outfile)
def initial_samples_jobs(name, level):
    if level == 1:
        raise RuntimeError('No need for initialization in level 1.')

    winning_structures = storage.load(winning_structure_file(name, level-1))

    params = storage.load(params_file(name))

    return [('init_job', name, level, pretty_print(s), split_id, sample_id)
            for s in winning_structures
            for split_id in range(params.num_splits)
            for sample_id in range(params.num_samples)]
def init_level(name, level):
    """Initialize a given level of the search by saving all of the structures which need
    to be evaluated."""
    if not storage.exists(experiment_dir(name)):
        raise RuntimeError('Experiment %s not yet initialized.' % name)

    params = storage.load(params_file(name))
    if level == 1:
        init_structures = ['g']
    else:
        init_structures = storage.load(winning_structure_file(name, level - 1))
    structure_pairs = list_structure_pairs(init_structures, params.rules, params.expand_noise)
    storage.dump(structure_pairs, structures_file(name, level))
def final_structure(name):
    params = storage.load(params_file(name))
    stop_at = 0
    for level in range(1, params.search_depth + 1):
        if compute_improvement(name, level) > 1.:
            stop_at = level
        else:
            break

    if stop_at == 0:
        return 'g', 0
    else:
        return storage.load(winning_structure_file(name, stop_at))[0], stop_at
def sequence_of_structures(name):
    """Get the sequence of structures corresponding to the final model chosen, i.e. a list
    of structures where each one was used to initialize the next one."""
    sequence = []
    params = storage.load(params_file(name))

    structure = storage.load(winning_structure_file(name, params.search_depth))[0]
    sequence = [structure]

    for level in range(1, params.search_depth)[::-1]:
        structure = init_structure_for(name, level + 1, structure)
        sequence = [structure] + sequence
    
    return sequence
def print_components(name, outfile=sys.stdout):
    structure, level = final_structure(name)
    if level == 0:
        return
    seq = storage.load(winning_samples_file(name, 0))
    decomp = seq[level]
    print_components_for_decomp(name, structure, decomp, outfile)
def summarize_results(name, outfile=sys.stdout):
    params = storage.load(params_file(name))
    print_model_sequence(name, outfile)
    print_failures(name, outfile)
    print_running_times(name, outfile)
    for level in range(1, params.search_depth+1):
        print_scores(name, level, outfile)
    print_components(name, outfile)
def collect_scores_for_level(name, level):
    """Collect the held-out predictive log-likelihood scores for all CV splits and
    order them according to the indices of the original data matrix."""
    structures = storage.load(structures_file(name, level))
    structures = [s for _, s in structures]
    
    for s in structures:
        collect_scores(name, level, s)
    save_winning_structures(name, level)
def compute_improvement(name, level, structure=None):
    """Compute the improvement in predictive likelihood score from one level to the next."""
    if structure is None:
        structure = storage.load(winning_structure_file(name, level))
        if type(structure) == list:
            structure = structure[0]
    prev_structure = init_structure_for(name, level, structure)
    curr_scores = compute_scores(name, level, structure)
    prev_scores = compute_scores(name, level-1, prev_structure)
    return (curr_scores.row_avg() - prev_scores.row_avg() + curr_scores.col_avg() - prev_scores.col_avg()) / 2.
def init_structure_for(name, level, structure):
    """Determine which of the previous level's structures was used to initialize a given structure."""
    if level == 1:
        return 'g'
    structure_pairs = storage.load(structures_file(name, level))
    init_structure = None
    for init_s, s, in structure_pairs:
        if s == structure:
            init_structure = init_s
    assert init_structure is not None
    return init_structure
Esempio n. 19
0
def load_trained_rbm(fname):
    """Load a previously trained RBM"""
    if fname[-2:] == 'pk':
        return storage.load(fname)
    elif fname[-3:] == 'mat':
        vars = scipy.io.loadmat(fname)
        return binary_rbms.RBM(gnp.garray(vars['visbiases'].ravel()),
                               gnp.garray(vars['hidbiases'].ravel()),
                               gnp.garray(vars['vishid']))
    else:
        raise RuntimeError('Unknown format: {}'.format(fname))
Esempio n. 20
0
def run_everything(name, args, email=None):
    params = storage.load(params_file(name))
    init_level(name, 1)
    run_jobs(evaluation_jobs(name, 1), args, evaluation_key(name, 1))
    collect_scores_for_level(name, 1)
    for level in range(2, params.search_depth + 1):
        init_level(name, level)
        run_jobs(initial_samples_jobs(name, level), args, initial_samples_key(name, level))
        run_jobs(evaluation_jobs(name, level), args, evaluation_key(name, level))
        collect_scores_for_level(name, level)
    run_jobs(final_model_jobs(name), args, final_model_key(name))
    save_report(name, email)
def sample_from_model(name, level, init_structure, structure, split_id, sample_id):
    """Run an MCMC sampler to approximately sample from the posterior."""
    params = storage.load(params_file(name))
    data_matrix = storage.load(data_file(name))
    splits = storage.load(splits_file(name))
    train_rows, train_cols, test_rows, test_cols = splits[split_id]
    
    X_train = data_matrix[train_rows[:, nax], train_cols[nax, :]]

    if level == 1:
        init = X_train.sample_latent_values(np.zeros((X_train.m, X_train.n)), 1.)
        prev_model = recursive.GaussianNode(init, 'scalar', 1.)
    else:
        if params.save_samples:
            prev_model = storage.load(samples_file(name, level-1, init_structure, split_id, sample_id))
        else:
            prev_model = storage.load(init_samples_file(name, level, init_structure, split_id, sample_id))
        if isinstance(prev_model, recursive.Decomp):
            prev_model = prev_model.root

    return recursive.fit_model(structure, X_train, prev_model, gibbs_steps=params.gibbs_steps)
Esempio n. 22
0
def print_failures(name, outfile=sys.stdout):
    params = storage.load(params_file(name))
    failures = []
    for level in range(1, params.search_depth + 1):
        for _, structure in storage.load(structures_file(name, level)):
            total_ok = 0

            for split_id in range(params.num_splits):
                for sample_id in range(params.num_samples):
                    fname = scores_file(name, level, structure, split_id, sample_id)
                    if storage.exists(fname):
                        row_loglik, col_loglik = storage.load(fname)
                        if np.all(np.isfinite(row_loglik)) and np.all(np.isfinite(col_loglik)):
                            total_ok += 1

            if total_ok == 0:
                failures.append(presentation.Failure(structure, level, True))
            elif total_ok < params.num_splits * params.num_samples:
                failures.append(presentation.Failure(structure, level, False))

    presentation.print_failed_structures(failures, outfile)
def print_running_times(name, outfile=sys.stdout):
    params = storage.load(params_file(name))
    running_times = []
    for level in range(1, params.search_depth+1):
        structures = storage.load(structures_file(name, level))
        structures = [s[1] for s in structures]
        for structure in structures:
            total = 0.
            num_samples = 0
            for split in range(params.num_splits):
                for sample_id in range(params.num_samples):
                    rtf = running_time_file(name, level, structure, split, sample_id)
                    try:
                        total += float(storage.load(rtf))
                        num_samples += 1
                    except IOError:
                        pass
            if num_samples > 0:
                running_times.append(presentation.RunningTime(level, structure, num_samples, total))

    presentation.print_running_times(running_times, outfile)
def print_failures(name, outfile=sys.stdout):
    params = storage.load(params_file(name))
    failures = []
    for level in range(1, params.search_depth + 1):
        for _, structure in storage.load(structures_file(name, level)):
            total_ok = 0
            
            for split_id in range(params.num_splits):
                for sample_id in range(params.num_samples):
                    fname = scores_file(name, level, structure, split_id, sample_id)
                    if storage.exists(fname):
                        row_loglik, col_loglik = storage.load(fname)
                        if np.all(np.isfinite(row_loglik)) and np.all(np.isfinite(col_loglik)):
                            total_ok += 1

            if total_ok == 0:
                failures.append(presentation.Failure(structure, level, True))
            elif total_ok < params.num_splits * params.num_samples:
                failures.append(presentation.Failure(structure, level, False))

    presentation.print_failed_structures(failures, outfile)
def run_everything(name, args, email=None):
    params = storage.load(params_file(name))
    init_level(name, 1)
    run_jobs(evaluation_jobs(name, 1), args, evaluation_key(name, 1))
    collect_scores_for_level(name, 1)
    for level in range(2, params.search_depth + 1):
        init_level(name, level)
        run_jobs(initial_samples_jobs(name, level), args, initial_samples_key(name, level))
        run_jobs(evaluation_jobs(name, level), args, evaluation_key(name, level))
        collect_scores_for_level(name, level)
    run_jobs(final_model_jobs(name), args, final_model_key(name))
    save_report(name, email)
Esempio n. 26
0
def print_running_times(name, outfile=sys.stdout):
    params = storage.load(params_file(name))
    running_times = []
    for level in range(1, params.search_depth+1):
        structures = storage.load(structures_file(name, level))
        structures = [s[1] for s in structures]
        for structure in structures:
            total = 0.
            num_samples = 0
            for split in range(params.num_splits):
                for sample_id in range(params.num_samples):
                    rtf = running_time_file(name, level, structure, split, sample_id)
                    try:
                        total += float(storage.load(rtf))
                        num_samples += 1
                    except IOError:
                        pass
            if num_samples > 0:
                running_times.append(presentation.RunningTime(level, structure, num_samples, total))

    presentation.print_running_times(running_times, outfile)
Esempio n. 27
0
def run_gibbs(expt, save=True, show_progress=False):
    """Run Gibbs chains starting from the AIS particles (sampled proportionally to their
    weights), and save the final particles."""
    if isinstance(expt, str):
        expt = get_experiment(expt)
    tr_expt = get_training_expt(expt)

    for it in tr_expt.save_after:
        for avg in AVG_VALS:
            print 'Iteration', it, avg
            try:
                rbm = load_rbm(expt, it, avg)
            except:
                continue
            log_Z = storage.load(expt.log_Z_file(it, avg)).as_numpy_array()
            final_states = storage.load(expt.final_states_file(it, avg))

            # sample the states proportionally to the Z estimates
            p = log_Z - np.logaddexp.reduce(log_Z)
            p /= p.sum(
            )  # not needed in theory, but numpy complains if it doesn't sum exactly to 1
            idxs = np.random.multinomial(
                1, p, size=expt.annealing.num_particles).argmax(1)
            states = binary_rbms.RBMState(final_states.v[idxs, :],
                                          final_states.h[idxs, :])

            if show_progress:
                pbar = misc.pbar(expt.gibbs_steps)

            for st in range(expt.gibbs_steps):
                states = rbm.step(states)

                if show_progress:
                    pbar.update(st)

            if show_progress:
                pbar.finish()

            if save:
                storage.dump(states, expt.gibbs_states_file(it, avg))
def run_model(name, level, init_structure, structure, split_id, sample_id, save=True, save_sample=False):
    """Sample from the posterior given the training data, and evaluate on heldout rows/columns."""
    params = storage.load(params_file(name))
    t0 = time.time()
    root = sample_from_model(name, level, init_structure, structure, split_id, sample_id)
    if save and (save_sample or params.save_samples):
        storage.dump(root, samples_file(name, level, structure, split_id, sample_id))
        print 'Saved.'
    row_loglik, col_loglik = evaluate_decomp(name, level, init_structure, split_id, sample_id, root)
    print 'Row:', row_loglik.mean()
    print 'Col:', col_loglik.mean()
    if save:
        storage.dump((row_loglik, col_loglik), scores_file(name, level, structure, split_id, sample_id))
        storage.dump(time.time() - t0, running_time_file(name, level, structure, split_id, sample_id))
def print_scores(name, level, outfile=sys.stdout):
    structures = storage.load(structures_file(name, level))
    structures = [s for _, s in structures]
    model_scores = []
    for s in structures:
        result = compute_scores(name, level, s)
        if not result.all_finite():
            continue
        if result is not None:
            prev_structure = init_structure_for(name, level, s)
            prev_result = compute_scores(name, level-1, prev_structure)
            model_scores.append(get_model_score(s, result, prev_result))
    model_scores.sort(key=lambda ms: ms.total, reverse=True)
    presentation.print_scores(level, model_scores, outfile)
Esempio n. 30
0
def print_scores(name, level, outfile=sys.stdout):
    structures = storage.load(structures_file(name, level))
    structures = [s for _, s in structures]
    model_scores = []
    for s in structures:
        result = compute_scores(name, level, s)
        if not result.all_finite():
            continue
        if result is not None:
            prev_structure = init_structure_for(name, level, s)
            prev_result = compute_scores(name, level - 1, prev_structure)
            model_scores.append(get_model_score(s, result, prev_result))
    model_scores.sort(key=lambda ms: ms.total, reverse=True)
    presentation.print_scores(level, model_scores, outfile)
Esempio n. 31
0
def sample_from_model(name, level, init_structure, structure, split_id, sample_id):
    """Run an MCMC sampler to approximately sample from the posterior."""
    params = storage.load(params_file(name))
    data_matrix = storage.load(data_file(name))
    splits = storage.load(splits_file(name))
    train_rows, train_cols, test_rows, test_cols = splits[split_id]

    X_train = data_matrix[train_rows[:, nax], train_cols[nax, :]]

    if level == 1:
        init = X_train.sample_latent_values(np.zeros((X_train.m, X_train.n)), 1.)
        prev_model = recursive.GaussianNode(init, 'scalar', 1.)
    else:
        try:
            if params.save_samples:
                prev_model = storage.load(samples_file(name, level-1, init_structure, split_id, sample_id))
            else:
                prev_model = storage.load(init_samples_file(name, level, init_structure, split_id, sample_id))
            if isinstance(prev_model, recursive.Decomp):
                prev_model = prev_model.root
        except:
            return None
    return recursive.fit_model(structure, X_train, prev_model, gibbs_steps=params.gibbs_steps)
Esempio n. 32
0
def run_model(name, level, init_structure, structure, split_id, sample_id, save=True, save_sample=False):
    """Sample from the posterior given the training data, and evaluate on heldout rows/columns."""
    params = storage.load(params_file(name))
    t0 = time.time()
    try:
        root = sample_from_model(name, level, init_structure, structure, split_id, sample_id)
    except:
        return
    # if save and (save_sample or params.save_samples):
    storage.dump(root, samples_file(name, level, structure, split_id, sample_id))
    #    print('Saved.')
    try:
        row_loglik, col_loglik = evaluate_decomp(name, level, init_structure, split_id, sample_id, root)
    except:
        return
    print('Row:', row_loglik.mean())
    print('Col:', col_loglik.mean())
    if save:
        storage.dump((row_loglik, col_loglik), scores_file(name, level, structure, split_id, sample_id))
        storage.dump(time.time() - t0, running_time_file(name, level, structure, split_id, sample_id))
def print_components_for_decomp(name, structure, decomp, outfile=sys.stdout):
    data_matrix = storage.load(data_file(name))

    for model in ['clustering', 'binary']:
        if model == 'clustering':
            left_dist, right_dist = 'm', 'M'
        else:
            left_dist, right_dist = 'b', 'B'

        if data_matrix.row_labels is not None:
            nodes = recursive.find_nodes(decomp, lambda node: isinstance(node, recursive.LeafNode)
                                         and node.distribution() == left_dist and node.m == data_matrix.m)
            for node in nodes:
                items = [presentation.LatentVariables(row_label, node.value()[i, :])
                         for i, row_label in enumerate(data_matrix.row_labels)]
                presentation.print_components(model, structure, 'row', items, outfile)

        if data_matrix.col_labels is not None:
            nodes = recursive.find_nodes(decomp, lambda  node: isinstance(node, recursive.LeafNode)
                                         and node.distribution() == right_dist and node.n == data_matrix.n)
            for node in nodes:
                items = [presentation.LatentVariables(col_label, node.value()[:, i])
                         for i, col_label in enumerate(data_matrix.col_labels)]
                presentation.print_components(model, structure, 'col', items, outfile)
Esempio n. 34
0
def load_small_rbm():
    return storage.load(SMALL_RBM_FILE)
def load_params(prefix):
    expt_name = all_experiment_names(prefix)[0]
    return storage.load(experiments.params_file(expt_name))
Esempio n. 36
0
def final_model_jobs(name):
    params = storage.load(params_file(name))

    return [('final_job', name, i) for i in range(params.num_samples)]
Esempio n. 37
0
def sample_matrix(name, sample_id, level, size, output_file):
    decomps = storage.load(winning_samples_file(name, sample_id))
    data = decomps[level].sample_matrix(size)
    storage.dump(data, output_file)
    print('Samples saved at: "{}".'.format(output_file))
Esempio n. 38
0
def load_wall_clock_time(expt_name):
    eval_expt = evaluation.get_experiment(expt_name)
    tr_expt = from_scratch.get_experiment(eval_expt.rbm_source.expt_name)
    return [storage.load(tr_expt.time_file(it)) for it in tr_expt.save_after
            if os.path.exists(tr_expt.time_file(it))]
Esempio n. 39
0
def load_params(prefix):
    expt_name = all_experiment_names(prefix)[0]
    return storage.load(experiments.params_file(expt_name))
def final_model_jobs(name):
    params = storage.load(params_file(name))
    
    return [('final_job', name, i) for i in range(params.num_samples)]