def synthesize(model, step, configs, vocoder, batchs): preprocess_config, model_config, train_config = configs for batch in batchs: batch = to_device(batch, device) with torch.no_grad(): # Forward output = model(*(batch[2:]), ) synth_samples( batch, output, vocoder, model_config, preprocess_config, train_config["path"]["result_path"], )
def synthesize(model, step, configs, vocoder, batchs, control_values): preprocess_config, model_config, train_config = configs pitch_control, energy_control, duration_control = control_values for batch in batchs: batch = to_device(batch, device) with torch.no_grad(): # Forward output = model(*(batch[2:]), p_control=pitch_control, e_control=energy_control, d_control=duration_control) synth_samples( batch, output, vocoder, model_config, preprocess_config, train_config["path"]["result_path"], )