Esempio n. 1
0
        # 除了最后的卷积层外,进一步增大了输出通道数
        # 前两个卷积层后部使用池化层来减小输入的高和宽
        nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
        nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
        nn.Conv2D(256, kernel_size=3, padding=1, activation='relu'),
        nn.MaxPool2D(pool_size=3, strides=2),
        # 这里全连接层的输出个数比LeNet中大数倍,使用丢弃层来缓解过拟合
        nn.Dense(4096, activation='relu'),
        nn.Dropout(0.5),
        nn.Dense(4096, activation='relu'),
        nn.Dropout(0.5),
        # 输出层,对应Fashion-MNIST数据集的10种类别
        nn.Dense(10))
    X = nd.random.uniform(shape=(1, 1, 224, 224))
    net.initialize()
    for layer in net:
        X = layer(X)
        print(layer.name, 'output shape:\t', X.shape)

    batch_size = 128
    train_iter, test_iter = util.load_data_fashion_mnist(batch_size,
                                                         resize=224)
    learning_rate = 0.01
    num_epochs = 5
    ctx = util.try_gpu()
    net.initialize(force_reinit=True, ctx=ctx, init=init.Xavier())
    trainer = gluon.Trainer(net.collect_params(), 'sgd',
                            {'learning_rate': learning_rate})
    util.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx,
                   num_epochs)
Esempio n. 2
0
    ratios = [[1, 2, 0.5]] * 5
    num_anchors = len(sizes[0]) + len(ratios[0]) - 1

    # 创建模型
    net = TinySSD(num_classes=1)
    net.initialize()
    X = nd.zeros((32.3, 256, 256))
    anchors, cls_preds, bbox_preds = net(X)
    print('output anchors:', anchors.shape)
    print('output class preds:', cls_preds.shape)
    print('output bbox preds:', bbox_preds.shape)

    # 读物数据集,初始化
    batch_size = 32
    train_iter, _ = util.load_data_pikachu(batch_size)
    ctx, net = util.try_gpu(), TinySSD(num_classes=1)
    net.initialize(init=init.Xavier(), ctx=ctx)
    trainer = gluon.Trainer(net.collect_params(), 'sgd', {
        'learning_rate': 0.2,
        'wd': 5e-4
    })

    # 定义损失函数和评价函数
    cls_loss = gluon.loss.SoftmaxCrossEntropyLoss()
    bbox_loss = gluon.loss.L1Loss()

    # 训练模型
    for epoch in range(20):
        acc_sum, mae_sum, n, m = 0.0, 0.0, 0, 0
        train_iter.reset()  # 从头读取数据
        start = time.time()
Esempio n. 3
0
if __name__ == '__main__':
    block = Residual(3)
    block.initialize()
    X = nd.random.uniform(shape=(4, 3, 6, 6))
    print(block(X).shape)

    block = Residual(6, use_1x1conv=True, strides=2)
    block.initialize()
    print(block(X).shape)

    net = nn.Sequential()
    net.add(nn.Conv2D(64, kernel_size=7, padding=3, strides=2),
            nn.BatchNorm(), nn.Activation('relu'),
            nn.MaxPool2D(pool_size=3, padding=1, strides=2))
    net.add(resnet_block(64, 2, first_block=True),
            resnet_block(128, 2),
            resnet_block(256, 2),
            resnet_block(512, 2))
    net.add(nn.GlobalAvgPool2D(), nn.Dense(10))
    X = nd.random.uniform(shape=(1, 1, 224, 224))
    net.initialize()
    for layer in net:
        X = layer(X)
        print(layer.name, 'output shape:\t', X.shape)

    lr, num_epochs, batch_size, ctx = 0.05, 5, 256, util.try_gpu()
    net.initialize(force_reinit=True, ctx=ctx, init=init.Xavier())
    trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
    train_iter, test_iter = util.load_data_fashion_mnist(batch_size, resize=96)
    util.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx, num_epochs)
Esempio n. 4
0
           nn.MaxPool2D(pool_size=3, strides=2, padding=1))
    b3 = nn.Sequential()
    b3.add(Inception(64, (96, 128), (16, 32), 32),
           Inception(128, (128, 192), (32, 96), 64),
           nn.MaxPool2D(pool_size=3, strides=2, padding=1))
    b4 = nn.Sequential()
    b4.add(Inception(192, (96, 208), (16, 48), 64),
           Inception(160, (112, 224), (24, 64), 64),
           Inception(128, (128, 256), (24, 64), 64),
           Inception(112, (144, 288), (32, 64), 64),
           Inception(256, (160, 320), (32, 128), 128),
           nn.MaxPool2D(pool_size=3, strides=2, padding=1))
    b5 = nn.Sequential()
    b5.add(Inception(256, (160, 320), (32, 128), 128),
           Inception(384, (192, 384), (48, 128), 128), nn.GlobalAvgPool2D())
    net = nn.Sequential()
    net.add(b1, b2, b3, b4, b5, nn.Dense(10))

    X = nd.random.uniform(shape=(1, 1, 96, 96))
    net.initialize()
    for layer in net:
        X = layer(X)
        print(layer.name, 'output shape:\t', X.shape)

    lr, num_epochs, batch_size, ctx = 0.1, 5, 128, util.try_gpu()
    net.initialize(force_reinit=True, ctx=ctx, init=init.Xavier())
    trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
    train_iter, test_iter = util.load_data_fashion_mnist(batch_size, resize=96)
    util.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx,
                   num_epochs)