Esempio n. 1
0
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    # prepare_env(cfg)

    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    # model.apply(weight_init)

    model.cuda()

    # weight_file = ""
    # weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/thumos14_checkpoint_best_cas_epoch125_iou0.5__0.2928.pth"
    # weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/anet12_checkpoint_best_cas_epoch30_map_0.2394.pth"
    # weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/anet13_checkpoint_best_cas_epoch35_map_0.2348.pth"
    weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/thumos14/000_thumos_29.13_save_model_Frame_wise_accuracy/checkpoint_best_cas.pth"

    epoch = 801
    from utils.utils import load_weights
    model = load_weights(model, weight_file)

    evaluate_save_for_post_process(cfg, val_loader, model, epoch)
Esempio n. 2
0
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    cfg.BASIC.ROOT_DIR = os.path.join(os.path.dirname(__file__), '..')

    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    model.cuda()

    if not os.path.exists(args.res_dir):
        os.makedirs(args.res_dir)

    model = load_weights(model, args.weight_file)

    evaluate_vis_cas(cfg, val_loader, model, args.res_dir, args.is_minmax_norm)
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    # prepare_env(cfg)

    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model_cas = LocNet(cfg)
    # model.apply(weight_init)
    model_cam = LocNet(cfg)

    model_cas.cuda()
    model_cam.cuda()

    # weight_file = ""
    # weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/thumos14_checkpoint_best_cas_epoch125_iou0.5__0.2928.pth"
    # weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/anet12_checkpoint_best_cas_epoch30_map_0.2394.pth"
    # weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/anet13/anet13_same_as_anet12_seed1_epoch45_TOPK_K_R_0.6_LR_DECAY26_save_every_model/checkpoint_best_cas_epoch35.pth"
    weight_file_cas = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/thumos14/thumos_ablation_only_cas_only_cam_separate_weight_save_model/checkpoint_best_cas_epoch75_0.2055.pth"

    weight_file_cam = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/thumos14/thumos_ablation_only_cas_only_cam_separate_weight_save_model/checkpoint_best_cam_epoch89_0.176.pth"
    from utils.utils import load_weights
    model_cas = load_weights(model_cas, weight_file_cas)
    model_cam = load_weights(model_cam, weight_file_cam)

    epoch = 911
    output_json_file_cas, test_acc_cas = evaluate_fuse_sequence(
        cfg, val_loader, model_cas, model_cam, epoch)
    # output_json_file_cas, test_acc_cas = evaluate(cfg, val_loader, model, epoch)
    if cfg.BASIC.VERBOSE:
        print('test_acc, cas %f' % (test_acc_cas))
    mAP, average_mAP = evaluate_mAP(
        cfg, output_json_file_cas,
        os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE),
        cfg.BASIC.VERBOSE)
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    prepare_env(cfg)

    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    # model.apply(weight_init)

    model.cuda()

    # weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/thumos14_checkpoint_best_cas_epoch125_iou0.5__0.2928.pth'
    # weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/anet12_checkpoint_best_cas_epoch30_map_0.2545.pth'
    # weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/anet13_checkpoint_best_cas_epoch35_map_0.2348.pth'
    # weight_file = ''
    weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/thumos14/thumos_ablation_inv_0_save_model/checkpoint_best_cas_inv0_epoch69_0.2636.pth'
    # weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/thumos14/thumos_ablation_only_cas_save_model/checkpoint_best_cas_only_cas_epoch134_0.1957.pth'
    # weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/thumos14/thumos_ablation_individual_attention_2048k1_2048k1_2048k1_only_cam_svae_model/checkpoint_best_cas_only_cam_epoch96_0.1714.pth'
    res_dir = os.path.join(cfg.BASIC.CKPT_DIR, cfg.TEST.RESULT_DIR,
                           'vis/cas_gt_idx_minmax_norm_std')
    if not os.path.exists(res_dir):
        os.makedirs(res_dir)

    from utils.utils import load_weights
    model = load_weights(model, weight_file)

    epoch = 600
    output_json_file_cas, output_json_file_cam, test_acc_cas, test_acc_cam = evaluate(
        cfg, val_loader, model, epoch)
    evaluate_mAP(cfg, output_json_file_cas,
                 os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE),
                 cfg.BASIC.VERBOSE)
    evaluate_mAP(cfg, output_json_file_cam,
                 os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE),
                 cfg.BASIC.VERBOSE)

    is_minmax_norm = True
    evaluate_vis_cas_minmax_norm_std(cfg, val_loader, model, res_dir,
                                     is_minmax_norm)
Esempio n. 5
0
def main(config):
    print(config)
    # initialize model
    model = get_model(config)
    # load weights from checkpoint
    state_dict = load_weights(config['resume_ckpt'])
    model.load_state_dict(state_dict)
    model.cuda()
    model.eval()

    train_dataloader, test_dataloader, val_dataloader = setup_dataloaders(
        config)
    eval_encoding(config, model, train_dataloader, test_dataloader,
                  val_dataloader)
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    prepare_env(cfg)

    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    # model.apply(weight_init)

    model.cuda()

    # weight_file = ""
    weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/thumos14_checkpoint_best_cas_epoch125_iou0.5__0.2928.pth"
    # weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/anet12_checkpoint_best_cas_epoch30_map_0.2394.pth"
    # weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/anet13_checkpoint_best_cas_epoch35_map_0.2348.pth"

    epoch = 801
    from utils.utils import load_weights
    model = load_weights(model, weight_file)

    # actions_json_file = evaluate(cfg, val_loader, model, epoch)
    #
    # evaluate_mAP(cfg, actions_json_file, os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE))

    # output_json_file_cas, output_json_file_cam, test_acc_cas, test_acc_cam = evaluate(cfg, val_loader, model, epoch)
    output_json_file_cas, test_acc_cas = evaluate(cfg, val_loader, model,
                                                  epoch)
    if cfg.BASIC.VERBOSE:
        print('test_acc, cas %f' % (test_acc_cas))
    mAP, average_mAP = evaluate_mAP(
        cfg, output_json_file_cas,
        os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE),
        cfg.BASIC.VERBOSE)
Esempio n. 7
0
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    # prepare_env(cfg)

    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    # model.apply(weight_init)

    model.cuda()

    # weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/anet12/anet12_0.2350_cam_inv_1_seed7_epoch36_TOPK_K_R_0.25__save_model_LR_decay/anet12_checkpoint_best_cas_0.2394.pth'
    weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/anet13/anet13_same_as_anet12_seed1_epoch45_TOPK_K_R_0.6_LR_DECAY26_save_every_model/anet13_checkpoint_best_cas_epoch28_0.2178.pth"
    epoch = 603
    from utils.utils import load_weights
    model = load_weights(model, weight_file)

    # actions_json_file = evaluate(cfg, val_loader, model, epoch)
    #
    # evaluate_mAP(cfg, actions_json_file, os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE))

    # output_json_file_cas, output_json_file_cam, test_acc_cas, test_acc_cam = evaluate(cfg, val_loader, model, epoch)
    output_json_file_cas, test_acc_cas = evaluate(cfg, val_loader, model,
                                                  epoch)
    if cfg.BASIC.VERBOSE:
        print('test_acc, cas %f' % (test_acc_cas))
    mAP, average_mAP = evaluate_mAP(
        cfg, output_json_file_cas,
        os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE),
        cfg.BASIC.VERBOSE)
Esempio n. 8
0
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    prepare_env(cfg)


    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset, batch_size=cfg.TEST.BATCH_SIZE, shuffle=False,
                            num_workers=cfg.BASIC.WORKERS, pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    # model.apply(weight_init)

    model.cuda()


    # weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/thumos14_checkpoint_best_cas_epoch125_iou0.5__0.2928.pth'
    # weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/anet12_checkpoint_best_cas_epoch30_map_0.2545.pth'
    weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/anet13_checkpoint_best_cas_epoch35_map_0.2348.pth'
    res_dir = os.path.join(cfg.BASIC.CKPT_DIR, cfg.TEST.RESULT_DIR,'vis/cas_weight_gt_idx_iou_0.85_mul_instance')
    if not os.path.exists(res_dir):
        os.makedirs(res_dir)

    from utils.utils import load_weights
    model = load_weights(model, weight_file)

    # epoch = 600
    # actions_json_file, _ = evaluate(cfg, val_loader, model, epoch)
    # evaluate_mAP(cfg, actions_json_file, os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE), cfg.BASIC.VERBOSE)

    is_minmax_norm = True

    evaluate_vis_cas_select_specific(cfg, val_loader, model, res_dir, is_minmax_norm)
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    prepare_env(cfg)

    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    # model.apply(weight_init)

    model.cuda()

    weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/anet12/anet12_no_inv_base_LR_0.0002_BATCH_128_save_model/checkpoint_best_cas_0.2243.pth'
    epoch = 600

    res_dir = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/anet12/anet12_no_inv_base_LR_0.0002_BATCH_128_save_model/vis/cas_minmax_norm'
    if not os.path.exists(res_dir):
        os.makedirs(res_dir)

    from utils.utils import load_weights
    model = load_weights(model, weight_file)
    is_minmax_norm = True
    # actions_json_file = evaluate(cfg, val_loader, model, epoch)
    #
    # evaluate_mAP(cfg, actions_json_file, os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE))

    # output_json_file_cas, output_json_file_cam, test_acc_cas, test_acc_cam = evaluate(cfg, val_loader, model, epoch)
    evaluate_vis_cas(cfg, val_loader, model, epoch, res_dir, is_minmax_norm)
Esempio n. 10
0
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    prepare_env(cfg)

    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    # model.apply(weight_init)

    model.cuda()

    # weight_file = ''
    weight_file = '/disk/yangle/Short-Actions/ECM/output/thumos14/ECM_baseline/checkpoint_best_150.pth'
    res_dir = os.path.join(cfg.BASIC.CKPT_DIR, cfg.TEST.RESULT_DIR,
                           'vis/ECM_thumos_score')
    if not os.path.exists(res_dir):
        os.makedirs(res_dir)

    from utils.utils import load_weights
    model = load_weights(model, weight_file)

    epoch = 600
    # output_json_file_cas, test_acc_cas = evaluate(cfg, val_loader, model, epoch)
    output_json_file_cas = '/disk/yangle/Short-Actions/ECM/output/thumos14/ECM_baseline/vis/ecm.json'
    evaluate_mAP(cfg, output_json_file_cas,
                 os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE),
                 cfg.BASIC.VERBOSE)
Esempio n. 11
0
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    # prepare_env(cfg)


    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset, batch_size=cfg.TEST.BATCH_SIZE, shuffle=False,
                            num_workers=cfg.BASIC.WORKERS, pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    # model.apply(weight_init)

    model.cuda()

    # weight_file = ""
    weight_file = "/disk/yangle/Short-Actions/ECM/output/thumos14/ECM_baseline/checkpoint_best_150.pth"

    epoch = 601
    from utils.utils import load_weights
    model = load_weights(model, weight_file)

    # actions_json_file = evaluate(cfg, val_loader, model, epoch)
    #
    # evaluate_mAP(cfg, actions_json_file, os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE))

    # output_json_file_cas, output_json_file_cam, test_acc_cas, test_acc_cam = evaluate(cfg, val_loader, model, epoch)
    output_json_file_cas, test_acc_cas = evaluate(cfg, val_loader, model, epoch)
    if cfg.BASIC.VERBOSE:
        print('test_acc, cas %f' % (test_acc_cas))
    mAP, average_mAP = evaluate_mAP(cfg, output_json_file_cas, os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE), cfg.BASIC.VERBOSE)
model.add(LeakyReLU(alpha=0.1))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(LeakyReLU(alpha=0.1))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(LeakyReLU(alpha=0.1))

model.add(Flatten())
model.add(Dense(256))
model.add(Dense(4096))
model.add(LeakyReLU(alpha=0.1))
model.add(Dense(1470))

print(model.summary())

# https://pan.baidu.com/s/1o9twnPo
load_weights(model, './yolo-tiny.weights')

imagePath = './test_images/test1.jpg'
image = plt.imread(imagePath)
image_crop = image[300:650, 500:, :]
resized = cv2.resize(image_crop, (448, 448))

batch = np.transpose(resized, (2, 0, 1))
batch = 2 * (batch / 255.) - 1
batch = np.expand_dims(batch, axis=0)
out = model.predict(batch)

boxes = yolo_net_out_to_car_boxes(out[0], threshold=0.17)

f, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6))
ax1.imshow(image)
Esempio n. 13
0
def detect(image_path, model_path, yolo_weights=None):
    """
    Introduction
    ------------
        加载模型,进行预测
    Parameters
    ----------
        model_path: 模型路径
        image_path: 图片路径
    """
    image = Image.open(image_path)
    resize_image = letterbox_image(image,
                                   (416, 416))  #resize 和padding图像 与训练的时候保持一致
    image_data = np.array(resize_image, dtype=np.float32)
    image_data /= 255.
    image_data = np.expand_dims(image_data, axis=0)  #扩展为[1 416 416 3]用于输入网络

    input_image_shape = tf.placeholder(dtype=tf.int32, shape=(2, ))
    input_image = tf.placeholder(shape=[None, 416, 416, 3], dtype=tf.float32)
    predictor = yolo_predictor(config.obj_threshold, config.nms_threshold,
                               config.classes_path, config.anchors_path)
    boxes, scores, classes = predictor.predict(input_image, input_image_shape)

    with tf.Session() as sess:
        if yolo_weights is not None:
            with tf.variable_scope('predict'):
                boxes, scores, classes = predictor.predict(
                    input_image, input_image_shape)
            load_op = load_weights(tf.global_variables(scope='predict'),
                                   weights_file=yolo_weights)
            sess.run(load_op)
        else:
            saver = tf.train.Saver()
            saver.restore(sess, model_path)

        #运行检测
        out_boxes, out_scores, out_classes = sess.run(
            [boxes, scores, classes],
            feed_dict={
                input_image: image_data,
                input_image_shape: [image.size[1], image.size[0]]
            })
        print('Found {} boxes for {}'.format(len(out_boxes), 'img'))
        font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
                                  size=np.floor(3e-2 * image.size[1] +
                                                0.5).astype('int32'))
        thickness = (image.size[0] + image.size[1]) // 300

        for i, c in reversed(list(enumerate(
                out_classes))):  #使用了reversed但是 枚举的索引与元素的对应关系没变,reversed意义何在?
            predicted_class = predictor.class_names[c]
            box = out_boxes[i]
            score = out_scores[i]

            label = '{} {:.2f}'.format(predicted_class, score)
            draw = ImageDraw.Draw(image)  #使用PIL里面的函数
            label_size = draw.textsize(label, font)

            top, left, bottom, right = box  #这里解析  box的形式是 y1 x1 y2 x2
            top = max(
                0,
                np.floor(top + 0.5).astype(
                    'int32'))  #因为是预测给出的框的大小,有可能越界,判断一下边界还是必要的,加0.5是为了四舍五入,向上取整
            left = max(0, np.floor(left + 0.5).astype('int32'))
            bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
            right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
            print(label, (left, top), (right, bottom))

            if top - label_size[1] >= 0:
                text_origin = np.array([
                    left, top - label_size[1]
                ])  #标签的文本一般放在框的上面,如果框的上面的高度大于label_size[1],则可以在上面画框,否则在下面画框
            else:
                text_origin = np.array([left, top + 1])

            # My kingdom for a good redistributable image drawing library.
            for i in range(thickness):
                draw.rectangle([left + i, top + i, right - i, bottom - i],
                               outline=predictor.colors[c])
            draw.rectangle(
                [tuple(text_origin),
                 tuple(text_origin + label_size)],
                fill=predictor.colors[c])
            draw.text(text_origin, label, fill=(0, 0, 0), font=font)
            del draw
        image.show()
        image.save('./test/result1.jpg')
Esempio n. 14
0
    ]  #(# of training samples, number_of_frames, appearance_representation_size)
    input_appearance_list_test = [
    ]  #(# of testing samples, number_of_frames, appearance_representation_size)
    input_flow_list_train = [
    ]  #(# of training samples, number_of_frames, width, height, channels)
    input_flow_list_test = [
    ]  #(# of testing samples, number_of_frames, width, height, channels)
    video_labels = [
    ]  #(# of samples, number_of_classes) #this array must be categorical

    #you can create a model from scratch or load a trained model
    if load_mode == 0:
        bubble_model = bm.create_bubble_network(batch_size, number_of_frames,
                                                appearance_representation_size,
                                                new_classes)  #creating a model
    else:
        bubble_model = utils.load_weights(path_to_load_model)
        #bubble_model.compile(optimizer=Adam(lr=0.0005, beta_1=0.9, beta_2=0.999), loss='categorical_crossentropy') #use this line if u need to compile the model

    #if you need to fit the model, use this. The dimensions shown below are related to our already trained model. You can train from scratch with different values
    bubble_model = bm.bubble_network_fit(bubble_model, input_flow_list_train,
                                         input_appearance_list_train,
                                         number_of_frames,
                                         output_label_list_train,
                                         number_of_epochs, batch_size,
                                         number_of_classes)

    #to predict samples -> parameters are (samples, 16, 225), (# of samples, 16, 112, 112, 3), batch_size
    predictions = bubble_model.predict(
        [input_appearance_list_test, input_flow_list_test], batch_size)
Esempio n. 15
0
def train(args: Arguments) -> None:
    """Trains an AlignmentModel to align sets of sentences."""

    if args.task == "classify":
        from classify.compute import AlignmentTrainer
        from classify.data import load_data
        from classify.metric import load_loss_and_metrics

        if args.word_to_word:
            from classify.models.ot_atten import AlignmentModel
        else:
            from classify.models.ot_atten_sent import AlignmentModel

    elif args.task == "similarity":
        from similarity.compute import AlignmentTrainer
        from similarity.data import load_data
        from similarity.metric import load_loss_and_metrics
        from similarity.models import AlignmentModel

    # Determine device
    device = (torch.device(args.gpu)
              if torch.cuda.is_available() else torch.device("cpu"))
    # device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

    print("Loading data")
    text_field, train_sampler, dev_sampler, test_sampler = load_data(
        args, device)

    print("Building model")
    model = AlignmentModel(
        args=args,
        text_field=text_field,
        domain=args.dataset,
        device=device,
    )

    saved_step = 0
    if args.checkpoint_path is not None:
        print(f"Loading checkpoint from: {args.checkpoint_path}")
        saved_step = 1 + int(
            args.checkpoint_path.split("_")[-1].replace(".pt", ""))
        print(f"trainig from step {saved_step}")
        load_weights(model, args.checkpoint_path)

    print(model)
    print(f"Number of parameters = {model.num_parameters(trainable=True):,}")

    print(f"Moving model to device: {device}")
    model.to(device)

    print("Defining loss and metrics")
    (
        loss_fn,
        metric_fn,
        extra_training_metrics,
        extra_validation_metrics,
    ) = load_loss_and_metrics(args)

    print("Creating optimizer and scheduler")
    if args.bert:
        # Prepare optimizer and schedule (linear warmup and decay)
        from transformers import AdamW
        from transformers import get_linear_schedule_with_warmup

        no_decay = ["bias", "LayerNorm.weight"]
        optimizer_grouped_parameters = [
            {
                "params": [
                    p for n, p in model.named_parameters()
                    if not any(nd in n for nd in no_decay)
                ],
                "weight_decay":
                args.weight_decay,
            },
            {
                "params": [
                    p for n, p in model.named_parameters()
                    if any(nd in n for nd in no_decay)
                ],
                "weight_decay":
                0.0,
            },
        ]
        # optimizer_grouped_parameters = get_params(model)
        optimizer = AdamW(optimizer_grouped_parameters, lr=args.lr, eps=1e-8)
        # num_batch_per_epoch = min(train_data.num_batches, args.max_batches_per_epoch)
        num_batch_per_epoch = len(train_sampler)
        t_total = int(num_batch_per_epoch // args.gradient_accumulation_steps *
                      args.epochs)
        # scheduler = WarmupLinearSchedule(optimizer, warmup_steps=int(t_total*0.06), t_total=t_total)
        scheduler = get_linear_schedule_with_warmup(
            optimizer,
            num_warmup_steps=int(t_total * args.warmup_ratio),
            num_training_steps=t_total,
        )
    else:
        optimizer = Adam(model.trainable_params,
                         lr=args.lr,
                         weight_decay=args.weight_decay)
        scheduler = make_schedular(args,
                                   optimizer,
                                   model.output_size,
                                   last_epoch=saved_step - 1)

    print("Building Trainer")
    trainer = AlignmentTrainer(
        args=args,
        train_sampler=train_sampler,
        dev_sampler=dev_sampler,
        test_sampler=test_sampler,
        model=model,
        loss_fn=loss_fn,
        metric_fn=metric_fn,
        optimizer=optimizer,
        scheduler=scheduler,
        epochs=args.epochs,
        extra_training_metrics=extra_training_metrics,
        extra_validation_metrics=extra_validation_metrics,
        log_dir=args.log_dir,
        log_frequency=args.log_frequency,
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        sparsity_thresholds=args.sparsity_thresholds,
        saved_step=saved_step,
    )

    if args.epochs > 0:
        print("Training")
        while not trainer.step():
            pass

    if args.preds_dir is not None or args.viz_dir is not None:
        print("Predicting")
        sentences, preds, targets = trainer.predict(
            num_predict=args.num_predict)

        # Extract targets
        targets = [target["targets"] for target in targets]
        targets = [t.item() for target in targets for t in target]

        # Convert indices back to tokens
        sentences = [(
            [text_field.deprocess(sentence) for sentence in doc_1],
            [text_field.deprocess(sentence) for sentence in doc_2],
        ) for doc_1, doc_2 in sentences]

        # Save predictions
        if args.preds_dir is not None:
            makedirs(args.preds_dir)
            preds_path = os.path.join(args.preds_dir, "preds.pkl")
            with open(preds_path, "wb") as f:
                sentences, preds, targets = sentences, preds, targets
                pickle.dump((sentences, preds, targets), f)

    elif args.epochs == 0:
        print("Evaluating")
        trainer.eval_step()
def main(config):
    save_path = config['save_path']
    epochs = config['epochs']
    os.environ['TORCH_HOME'] = config['torch_home']
    distributed = config['use_DDP']
    start_ep = 0
    start_cnt = 0

    # initialize model
    print("Initializing model...")
    if distributed:
        initialize_distributed(config)
    rank = config['rank']

    # map string name to class constructor
    model = get_model(config)
    model.apply(init_weights)
    if config['resume_ckpt'] is not None:
        # load weights from checkpoint
        state_dict = load_weights(config['resume_ckpt'])
        model.load_state_dict(state_dict)

    print("Moving model to GPU")
    model.cuda(torch.cuda.current_device())
    print("Setting up losses")

    if config['use_vgg']:
        criterionVGG = Vgg19PerceptualLoss(config['reduced_w'])
        criterionVGG.cuda()
        validationLoss = criterionVGG
    if config['use_gan']:
        use_sigmoid = config['no_lsgan']
        disc_input_channels = 3
        discriminator = MultiscaleDiscriminator(disc_input_channels,
                                                config['ndf'],
                                                config['n_layers_D'],
                                                'instance', use_sigmoid,
                                                config['num_D'], False, False)
        discriminator.apply(init_weights)
        if config['resume_ckpt_D'] is not None:
            # load weights from checkpoint
            print("Resuming discriminator from %s" % (config['resume_ckpt_D']))
            state_dict = load_weights(config['resume_ckpt_D'])
            discriminator.load_state_dict(state_dict)

        discriminator.cuda(torch.cuda.current_device())
        criterionGAN = GANLoss(use_lsgan=not config['no_lsgan'])
        criterionGAN.cuda()
        criterionFeat = nn.L1Loss().cuda()
    if config['use_l2']:
        criterionMSE = nn.MSELoss()
        criterionMSE.cuda()
        validationLoss = criterionMSE

    # initialize dataloader
    print("Setting up dataloaders...")
    train_dataloader, val_dataloader, train_sampler = setup_dataloaders(config)
    print("Done!")
    # run the training loop
    print("Initializing optimizers...")
    optimizer_G = optim.Adam(model.parameters(),
                             lr=config['learning_rate'],
                             weight_decay=config['weight_decay'])
    if config['resume_ckpt_opt_G'] is not None:
        optimizer_G_state_dict = torch.load(
            config['resume_ckpt_opt_G'],
            map_location=lambda storage, loc: storage)
        optimizer_G.load_state_dict(optimizer_G_state_dict)
    if config['use_gan']:
        optimizer_D = optim.Adam(discriminator.parameters(),
                                 lr=config['learning_rate'])
        if config['resume_ckpt_opt_D'] is not None:
            optimizer_D_state_dict = torch.load(
                config['resume_ckpt_opt_D'],
                map_location=lambda storage, loc: storage)
            optimizer_D.load_state_dict(optimizer_D_state_dict)

    print("Done!")

    if distributed:
        print("Moving model to DDP...")
        model = DDP(model)
        if config['use_gan']:
            discriminator = DDP(discriminator, delay_allreduce=True)
        print("Done!")

    tb_logger = None
    if rank == 0:
        tb_logdir = os.path.join(save_path, 'tbdir')
        if not os.path.exists(tb_logdir):
            os.makedirs(tb_logdir)
        tb_logger = SummaryWriter(tb_logdir)
        # run training
        if not os.path.exists(save_path):
            os.makedirs(save_path)
        log_name = os.path.join(save_path, 'loss_log.txt')
        opt_name = os.path.join(save_path, 'opt.yaml')
        print(config)
        save_options(opt_name, config)
        log_handle = open(log_name, 'a')

    print("Starting training")
    cnt = start_cnt
    assert (config['use_warped'] or config['use_temporal'])

    for ep in range(start_ep, epochs):
        if train_sampler is not None:
            train_sampler.set_epoch(ep)

        for curr_batch in train_dataloader:
            optimizer_G.zero_grad()
            input_a = curr_batch['input_a'].cuda()
            target = curr_batch['target'].cuda()
            if config['use_warped'] and config['use_temporal']:
                input_a = torch.cat((input_a, input_a), 0)
                input_b = torch.cat((curr_batch['input_b'].cuda(),
                                     curr_batch['input_temporal'].cuda()), 0)
                target = torch.cat((target, target), 0)
            elif config['use_temporal']:
                input_b = curr_batch['input_temporal'].cuda()
            elif config['use_warped']:
                input_b = curr_batch['input_b'].cuda()

            output_dict = model(input_a, input_b)
            output_recon = output_dict['reconstruction']

            loss_vgg = loss_G_GAN = loss_G_feat = loss_l2 = 0
            if config['use_vgg']:
                loss_vgg = criterionVGG(output_recon,
                                        target) * config['vgg_lambda']
            if config['use_gan']:
                predicted_landmarks = output_dict['input_a_gauss_maps']
                # output_dict['reconstruction'] can be considered normalized
                loss_G_GAN, loss_D_real, loss_D_fake = apply_GAN_criterion(
                    output_recon, target, predicted_landmarks.detach(),
                    discriminator, criterionGAN)
                loss_D = (loss_D_fake + loss_D_real) * 0.5
            if config['use_l2']:
                loss_l2 = criterionMSE(output_recon,
                                       target) * config['l2_lambda']

            loss_G = loss_G_GAN + loss_G_feat + loss_vgg + loss_l2
            loss_G.backward()
            # grad_norm clipping
            if not config['no_grad_clip']:
                torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
            optimizer_G.step()
            if config['use_gan']:
                optimizer_D.zero_grad()
                loss_D.backward()
                # grad_norm clipping
                if not config['no_grad_clip']:
                    torch.nn.utils.clip_grad_norm_(discriminator.parameters(),
                                                   1.0)
                optimizer_D.step()

            if distributed:
                if config['use_vgg']:
                    loss_vgg = reduce_tensor(loss_vgg, config['world_size'])

            if rank == 0:
                if cnt % 10 == 0:
                    run_visualization(output_dict, output_recon, target,
                                      input_a, input_b, save_path, tb_logger,
                                      cnt)

                print_dict = {"learning_rate": get_learning_rate(optimizer_G)}
                if config['use_vgg']:
                    tb_logger.add_scalar('vgg.loss', loss_vgg, cnt)
                    print_dict['Loss_VGG'] = loss_vgg.data
                if config['use_gan']:
                    tb_logger.add_scalar('gan.loss', loss_G_GAN, cnt)
                    tb_logger.add_scalar('d_real.loss', loss_D_real, cnt)
                    tb_logger.add_scalar('d_fake.loss', loss_D_fake, cnt)
                    print_dict['Loss_G_GAN'] = loss_G_GAN
                    print_dict['Loss_real'] = loss_D_real.data
                    print_dict['Loss_fake'] = loss_D_fake.data
                if config['use_l2']:
                    tb_logger.add_scalar('l2.loss', loss_l2, cnt)
                    print_dict['Loss_L2'] = loss_l2.data

                log_iter(ep,
                         cnt % len(train_dataloader),
                         len(train_dataloader),
                         print_dict,
                         log_handle=log_handle)

            if loss_G != loss_G:
                print("NaN!!")
                exit(-2)

            cnt = cnt + 1
            # end of train iter loop

            if cnt % config['val_freq'] == 0 and config['val_freq'] > 0:
                val_loss = run_val(
                    model, validationLoss, val_dataloader,
                    os.path.join(save_path, 'val_%d_renders' % (ep)))

                if distributed:
                    val_loss = reduce_tensor(val_loss, config['world_size'])
                if rank == 0:
                    tb_logger.add_scalar('validation.loss', val_loss, cnt)
                    log_iter(ep,
                             cnt % len(train_dataloader),
                             len(train_dataloader), {"Loss_VGG": val_loss},
                             header="Validation loss: ",
                             log_handle=log_handle)

        if rank == 0:
            if (ep % config['save_freq'] == 0):
                fname = 'checkpoint_%d.ckpt' % (ep)
                fname = os.path.join(save_path, fname)
                print("Saving model...")
                save_weights(model, fname, distributed)
                optimizer_g_fname = os.path.join(
                    save_path, 'latest_optimizer_g_state.ckpt')
                torch.save(optimizer_G.state_dict(), optimizer_g_fname)
                if config['use_gan']:
                    fname = 'checkpoint_D_%d.ckpt' % (ep)
                    fname = os.path.join(save_path, fname)
                    save_weights(discriminator, fname, distributed)
                    optimizer_d_fname = os.path.join(
                        save_path, 'latest_optimizer_d_state.ckpt')
                    torch.save(optimizer_D.state_dict(), optimizer_d_fname)
Esempio n. 17
0
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    prepare_env(cfg)

    # log
    writer = SummaryWriter(
        log_dir=os.path.join(cfg.BASIC.CKPT_DIR, cfg.BASIC.LOG_DIR))

    # dataloader
    train_dset = WtalDataset(cfg, cfg.DATASET.TRAIN_SPLIT)
    train_loader = DataLoader(train_dset,
                              batch_size=cfg.TRAIN.BATCH_SIZE,
                              shuffle=True,
                              num_workers=cfg.BASIC.WORKERS,
                              pin_memory=cfg.BASIC.PIN_MEMORY)
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    # model.apply(weight_init)

    model.cuda()

    # weight_file = "/disk3/zt/code/actloc/thumos/17_CAS_CAM_fast_tuning/output/20class_seed_0_save_model/checkpoint_best_cas_0.2701.pth"
    weight_file = '/disk3/zt/code/actloc/thumos/20_0.2701_try/output/debug_save_epoch30/checkpoint_best_cas.pth'

    from utils.utils import load_weights
    model = load_weights(model, weight_file)

    # optimizer
    optimizer = optim.Adam(model.parameters(),
                           lr=cfg.TRAIN.LR,
                           betas=cfg.TRAIN.BETAS,
                           weight_decay=cfg.TRAIN.WEIGHT_DECAY)

    optimizer.load_state_dict(torch.load(weight_file)['optimizer'])

    # criterion
    criterion = BasNetLoss()

    for epoch in range(1, cfg.TRAIN.EPOCH_NUM + 1):
        print('Epoch: %d:' % epoch)
        loss_average_cas, loss_average_cam, loss_average_consistency, loss_average_norm, loss_average_cas_inv, loss_average_cam_inv = train(
            cfg, train_loader, model, optimizer, criterion)

        writer.add_scalar('train_loss/cas', loss_average_cas, epoch)
        writer.add_scalar('train_loss/cam', loss_average_cam, epoch)
        writer.add_scalar('train_loss/consistency', loss_average_consistency,
                          epoch)
        writer.add_scalar('train_loss/norm', loss_average_norm, epoch)
        writer.add_scalar('train_loss/cas_inv', loss_average_cas_inv, epoch)
        writer.add_scalar('train_loss/cam_inv', loss_average_cam_inv, epoch)
        if cfg.BASIC.VERBOSE:
            print(
                'loss: cas %f, cam %f, consistency %f, norm %f, cas_inv %f, cam_inv %f'
                % (loss_average_cas, loss_average_cam,
                   loss_average_consistency, loss_average_norm,
                   loss_average_cas_inv, loss_average_cam_inv))

        # decay learning rate
        if epoch in cfg.TRAIN.LR_DECAY_EPOCHS:
            decay_lr(optimizer, factor=cfg.TRAIN.LR_DECAY_FACTOR)

        if epoch % cfg.TEST.EVAL_INTERVAL == 0:
            _, _, test_acc_cas, test_acc_cam = evaluate(
                cfg, val_loader, model, epoch)
            if cfg.BASIC.VERBOSE:
                print('test_acc, cas %f, cam %f' %
                      (test_acc_cas, test_acc_cam))
            writer.add_scalar('test_acc/cas', test_acc_cas, epoch)
            writer.add_scalar('test_acc/cam', test_acc_cam, epoch)

    writer.close()