Esempio n. 1
0
def play(args):
    # Create environment
    env = gym.make(args.env)
    num_actions = env.action_space.n

    state_buf = StateBuffer(args)

    # Define input placeholders
    state_ph = tf.placeholder(
        tf.uint8,
        (None, args.frame_height, args.frame_width, args.frames_per_state))

    # Instantiate DQN network
    DQN = DeepQNetwork(num_actions, state_ph, scope='DQN_main')
    DQN_predict_op = DQN.predict()

    # Create session
    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    # Load ckpt file
    loader = tf.train.Saver()
    if args.ckpt_file is not None:
        ckpt = args.ckpt_dir + '/' + args.ckpt_file
    else:
        ckpt = tf.train.latest_checkpoint(args.ckpt_dir)

    loader.restore(sess, ckpt)
    print('%s restored.\n\n' % ckpt)

    for ep in range(0, args.num_eps):
        # Reset environment and state buffer for next episode
        reset_env_and_state_buffer(env, state_buf, args)
        step = 0
        ep_done = False
        initial_steps = np.random.randint(1, args.max_initial_random_steps + 1)

        while not ep_done:
            time.sleep(0.05)
            env.render()

            # Choose random action for initial steps to ensure every episode has a random start point. Then choose action with highest Q-value according to network's current policy.
            if step < initial_steps:
                action = env.action_space.sample()
            else:
                state = np.expand_dims(state_buf.get_state(), 0)
                action = sess.run(DQN_predict_op, {state_ph: state})

            frame, _, ep_terminal, _ = env.step(action)
            frame = preprocess_image(frame, args.frame_width,
                                     args.frame_height)
            state_buf.add(frame)
            step += 1

            # Episode can finish either by reaching terminal state or max episode steps
            if ep_terminal or step == args.max_ep_length:
                ep_done = True
    def __getitem__(self, index):

        # get entry from dataframe
        image_id, labels_string = self.dataframe.values[index]
        #print("In dataset {}".format(labels_string))

        # process entry from dataframe in order to extract annotations
        # coords = str2coords(labels_string)

        # print(coords)
        # print(image_id)

        # get image coordinates
        # x_coords, y_coords = get_img_coords(labels_string, self.camera_matrix)
        # print(x_coords)
        # print(y_coords)

        # open image
        img0 = cv2.imread(self.imgs_path + image_id + ".jpg")
        img = preprocess_image(img0)

        # do we need to convert from HWC to CHW because of opencv??? MAJOR ISSUE!!!
        img = np.rollaxis(img, 2, 0)

        mask, regr = get_mask_and_regr(img0, labels_string, self.camera_matrix)
        #print("Regression shape {}".format(regr.shape))

        # convert from HWC to CHW
        regr = np.rollaxis(regr, 2, 0)

        #print("Regression shape after rollaxis {}".format(regr.shape))

        # print(mask.shape)
        # print(regr.shape)

        # display image - just for testing
        # w, h, _ = img.shape

        # for x, y in zip(x_coords, y_coords):
        #    cv2.circle(img0, (int(x), int(y)), 10, (0, 0, 255), -1)

        #img0 = visualize(img0, coords, self.camera_matrix)
        #img0 = cv2.resize(img0, (int(0.2 * h), int(0.2 * w)))

        # cv2.imshow("asdas", img)
        # cv2.imwrite("de_test.jpg", img)
        # cv2.imshow("mask", mask)
        # cv2.imshow("regr", regr[:,:,0])
        # cv2.waitKey(0)
        # cv2.destroyAllWindows()

        # we need to return x, y, z, yaw, pitch, roll values/heatmap and regression heatmap

        return img, mask, regr
Esempio n. 3
0
def predict_video(sess, video_file, video_out_file):
    video_in = imageio.get_reader(video_file)
    frames = []
    for i, image in enumerate(tqdm(video_in)):
        imageio.imwrite("data/cache.jpg", image)
        image_in, image_data = preprocess_image("data/cache.jpg",
                                                model_image_size=(608, 608),
                                                image_shape=(720, 1280),
                                                type="video")
        out_scores, out_boxes, out_classes = sess.run([scores, boxes, classes],
                                                      feed_dict={
                                                          yolo_model.input:
                                                          image_data,
                                                          K.learning_phase(): 0
                                                      })
        colors = generate_colors(class_names)
        draw_boxes(image_in, out_scores, out_boxes, out_classes, class_names,
                   colors)
        image_in.save(os.path.join("data", "cache_out.jpg"), quality=90)
        frames.append(imageio.imread("data/cache_out.jpg"))
    imageio.mimsave(video_out_file, frames)
Esempio n. 4
0
def predict_image(sess, image_in_file, image_out_file):
    image, image_data = preprocess_image(image_in_file,
                                         model_image_size=(608, 608))
    out_scores, out_boxes, out_classes = sess.run([scores, boxes, classes],
                                                  feed_dict={
                                                      yolo_model.input:
                                                      image_data,
                                                      K.learning_phase(): 0
                                                  })
    print('Found {} boxes for {}'.format(len(out_boxes), image_in_file))
    # Generate colors for drawing bounding boxes.
    colors = generate_colors(class_names)
    # Draw bounding boxes on the image file
    draw_boxes(image, out_scores, out_boxes, out_classes, class_names, colors)
    # Save the predicted bounding box on the image
    image.save(image_out_file, quality=90)
    # Display the results in the notebook
    output_image = scipy.misc.imread(image_out_file)
    imshow(output_image)
    pylab.show()
    return out_scores, out_boxes, out_classes
Esempio n. 5
0
def test(args):
    # Create environment
    env = gym.make(args.env)
    num_actions = env.action_space.n

    # Set random seeds for reproducability
    env.seed(args.random_seed)
    np.random.seed(args.random_seed)
    tf.set_random_seed(args.random_seed)

    # Initialise state buffer
    state_buf = StateBuffer(args)

    # Define input placeholders
    state_ph = tf.placeholder(
        tf.uint8,
        (None, args.frame_height, args.frame_width, args.frames_per_state))

    # Instantiate DQN network
    DQN = DeepQNetwork(num_actions, state_ph, scope='DQN_main')
    DQN_predict_op = DQN.predict()

    # Create session
    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    # Load ckpt file
    loader = tf.train.Saver()
    if args.ckpt_file is not None:
        ckpt = args.ckpt_dir + '/' + args.ckpt_file
    else:
        ckpt = tf.train.latest_checkpoint(args.ckpt_dir)

    loader.restore(sess, ckpt)
    sys.stdout.write('%s restored.\n\n' % ckpt)
    sys.stdout.flush()

    ckpt_split = ckpt.split('-')
    train_ep = ckpt_split[-1]

    # Create summary writer to write summaries to disk
    if not os.path.exists(args.log_dir):
        os.makedirs(args.log_dir)
    summary_writer = tf.summary.FileWriter(args.log_dir, sess.graph)

    # Create summary op to save episode reward to Tensorboard log
    reward_var = tf.Variable(0.0, trainable=False)
    tf.summary.scalar("Average Test Reward", reward_var)
    summary_op = tf.summary.merge_all()

    ## Begin testing

    env.reset()
    rewards = []

    for test_ep in range(args.num_eps_test):
        # Reset environment and state buffer for next episode
        reset_env_and_state_buffer(env, state_buf, args)
        ep_reward = 0
        step = 0
        ep_done = False

        initial_steps = np.random.randint(1, args.max_initial_random_steps + 1)

        sys.stdout.write('\n')
        sys.stdout.flush()

        while not ep_done:
            if args.render:
                env.render()
            else:
                env.render(mode='rgb_array')

            #Choose random action for initial steps to ensure every episode has a random start point. Then choose action with highest Q-value according to network's current policy.
            if step < initial_steps:
                test_action = env.action_space.sample()
            else:
                test_state = np.expand_dims(state_buf.get_state(), 0)
                test_action = sess.run(DQN_predict_op, {state_ph: test_state})

            test_frame, test_reward, test_ep_terminal, _ = env.step(
                test_action)

            test_frame = preprocess_image(test_frame, args.frame_width,
                                          args.frame_height)
            state_buf.add(test_frame)

            ep_reward += test_reward
            step += 1

            sys.stdout.write(
                '\x1b[2K\rTest episode {:d}/{:d} \t Steps = {:d} \t Reward = {:.2f}'
                .format(test_ep, args.num_eps_test, step, ep_reward))
            sys.stdout.flush()

            # Episode can finish either by reaching terminal state or max episode steps
            if test_ep_terminal or step == args.max_ep_length:
                rewards.append(ep_reward)
                ep_done = True

    mean_reward = np.mean(rewards)
    error_reward = ss.sem(rewards)

    sys.stdout.write(
        '\n\nTesting complete \t Average reward = {:.2f} +/- {:.2f} /ep \n\n'.
        format(mean_reward, error_reward))
    sys.stdout.flush()

    # Log average episode reward for Tensorboard visualisation
    summary_str = sess.run(summary_op, {reward_var: mean_reward})
    summary_writer.add_summary(summary_str, train_ep)

    # Write results to file
    if args.results_file is not None:
        if not os.path.exists(args.results_dir):
            os.makedirs(args.results_dir)
        output_file = open(args.results_dir + '/' + args.results_file, 'a')
        output_file.write(
            'Training Episode {}: \t Average reward = {:.2f} +/- {:.2f} /ep \n\n'
            .format(train_ep, mean_reward, error_reward))
        output_file.flush()
        sys.stdout.write('Results saved to file \n\n')
        sys.stdout.flush()

    env.close()
Esempio n. 6
0
def train(args):

    # Function to return exploration rate based on current step
    def exploration_rate(current_step, exp_rate_start, exp_rate_end,
                         exp_step_end):
        if current_step < exp_step_end:
            exploration_rate = current_step * (
                (exp_rate_end - exp_rate_start) / (float(exp_step_end))) + 1
        else:
            exploration_rate = exp_rate_end

        return exploration_rate

    # Function to update target network parameters with main network parameters
    def update_target_network(from_scope, to_scope):
        from_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                      from_scope)
        to_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, to_scope)

        op_holder = []

        # Update old network parameters with new network parameters
        for from_var, to_var in zip(from_vars, to_vars):
            op_holder.append(to_var.assign(from_var))

        return op_holder

    # Create environment
    env = gym.make(args.env)
    num_actions = env.action_space.n

    # Initialise replay memory and state buffer
    replay_mem = ReplayMemory(args)
    state_buf = StateBuffer(args)

    # Define input placeholders
    state_ph = tf.placeholder(
        tf.uint8,
        (None, args.frame_height, args.frame_width, args.frames_per_state))
    action_ph = tf.placeholder(tf.int32, (None))
    target_ph = tf.placeholder(tf.float32, (None))

    # Instantiate DQN network
    DQN = DeepQNetwork(
        num_actions,
        state_ph,
        action_ph,
        target_ph,
        args.learning_rate,
        scope='DQN_main'
    )  # Note: One scope cannot be the prefix of another scope (e.g. cannot name this scope 'DQN' and
    # target network scope 'DQN_target', as a search for vars in 'DQN' scope will return both networks' vars)
    DQN_predict_op = DQN.predict()
    DQN_train_step_op = DQN.train_step()

    # Instantiate DQN target network
    DQN_target = DeepQNetwork(num_actions, state_ph, scope='DQN_target')

    update_target_op = update_target_network('DQN_main', 'DQN_target')

    # Create session
    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    # Add summaries for Tensorboard visualisation
    tf.summary.scalar('Loss', DQN.loss)
    reward_var = tf.Variable(0.0, trainable=False)
    tf.summary.scalar("Episode Reward", reward_var)
    epsilon_var = tf.Variable(args.epsilon_start, trainable=False)
    tf.summary.scalar("Exploration Rate", epsilon_var)
    summary_op = tf.summary.merge_all()

    # Define saver for saving model ckpts
    model_name = 'model.ckpt'
    checkpoint_path = os.path.join(args.ckpt_dir, model_name)
    if not os.path.exists(args.ckpt_dir):
        os.makedirs(args.ckpt_dir)
    saver = tf.train.Saver(max_to_keep=201)

    # Create summary writer to write summaries to disk
    if not os.path.exists(args.log_dir):
        os.makedirs(args.log_dir)
    summary_writer = tf.summary.FileWriter(args.log_dir, sess.graph)

    # Load ckpt file if given
    if args.ckpt_file is not None:
        loader = tf.train.Saver()  #Restore all variables from ckpt
        ckpt = args.ckpt_dir + '/' + args.ckpt_file
        ckpt_split = ckpt.split('-')
        step_str = ckpt_split[-1]
        start_step = int(step_str)
        loader.restore(sess, ckpt)
    else:
        start_step = 0
        sess.run(tf.global_variables_initializer())
        sess.run(update_target_op)

    ## Begin training

    env.reset()

    ep_steps = 0
    episode_reward = 0
    episode_rewards = []
    duration_values = []

    # Initially populate replay memory by taking random actions
    sys.stdout.write('\nPopulating replay memory with random actions...\n')
    sys.stdout.flush()

    for random_step in range(1, args.initial_replay_mem_size + 1):

        if args.render:
            env.render()
        else:
            env.render(mode='rgb_array')

        action = env.action_space.sample()
        frame, reward, terminal, _ = env.step(action)
        frame = preprocess_image(frame, args.frame_width, args.frame_height)
        replay_mem.add(action, reward, frame, terminal)

        if terminal:
            env.reset()

        sys.stdout.write('\x1b[2K\rStep {:d}/{:d}'.format(
            random_step, args.initial_replay_mem_size))
        sys.stdout.flush()

    # Begin training process
    reset_env_and_state_buffer(env, state_buf, args)
    sys.stdout.write('\n\nTraining...\n\n')
    sys.stdout.flush()

    for train_step in range(start_step + 1, args.num_steps_train + 1):
        start_time = time.time()
        # Run 'train_frequency' iterations in the game for every training step
        for _ in range(0, args.train_frequency):
            ep_steps += 1

            if args.render:
                env.render()
            else:
                env.render(mode='rgb_array')

            # Use an epsilon-greedy policy to select action
            epsilon = exploration_rate(train_step, args.epsilon_start,
                                       args.epsilon_end, args.epsilon_step_end)
            if random.random() < epsilon:
                #Choose random action
                action = env.action_space.sample()
            else:
                #Choose action with highest Q-value according to network's current policy
                current_state = np.expand_dims(state_buf.get_state(), 0)
                action = sess.run(DQN_predict_op, {state_ph: current_state})

            # Take action and store experience
            frame, reward, terminal, _ = env.step(action)
            frame = preprocess_image(frame, args.frame_width,
                                     args.frame_height)
            state_buf.add(frame)
            replay_mem.add(action, reward, frame, terminal)
            episode_reward += reward

            if terminal or ep_steps == args.max_ep_steps:
                # Collect total reward of episode
                episode_rewards.append(episode_reward)
                # Reset episode reward and episode steps counters
                episode_reward = 0
                ep_steps = 0
                # Reset environment and state buffer for next episode
                reset_env_and_state_buffer(env, state_buf, args)

        ## Training step
        # Get minibatch from replay mem
        states_batch, actions_batch, rewards_batch, next_states_batch, terminals_batch = replay_mem.getMinibatch(
        )
        # Calculate target by passing next states through the target network and finding max future Q
        future_Q = sess.run(DQN_target.output, {state_ph: next_states_batch})
        max_future_Q = np.max(future_Q, axis=1)
        # Q values of the terminal states is 0 by definition
        max_future_Q[terminals_batch] = 0
        targets = rewards_batch + (max_future_Q * args.discount_rate)

        # Execute training step
        if train_step % args.save_log_step == 0:
            # Train and save logs
            average_reward = sum(episode_rewards) / len(episode_rewards)
            summary_str, _ = sess.run(
                [summary_op, DQN_train_step_op], {
                    state_ph: states_batch,
                    action_ph: actions_batch,
                    target_ph: targets,
                    reward_var: average_reward,
                    epsilon_var: epsilon
                })
            summary_writer.add_summary(summary_str, train_step)
            # Reset rewards buffer
            episode_rewards = []
        else:
            # Just train
            _ = sess.run(
                DQN_train_step_op, {
                    state_ph: states_batch,
                    action_ph: actions_batch,
                    target_ph: targets
                })

        # Update target networks
        if train_step % args.update_target_step == 0:
            sess.run(update_target_op)

        # Calculate time per step and display progress to console
        duration = time.time() - start_time
        duration_values.append(duration)
        ave_duration = sum(duration_values) / float(len(duration_values))

        sys.stdout.write('\x1b[2K\rStep {:d}/{:d} \t ({:.3f} s/step)'.format(
            train_step, args.num_steps_train, ave_duration))
        sys.stdout.flush()

        # Save checkpoint
        if train_step % args.save_ckpt_step == 0:
            saver.save(sess, checkpoint_path, global_step=train_step)
            sys.stdout.write('\n Checkpoint saved\n')
            sys.stdout.flush()

            # Reset time calculation
            duration_values = []
Esempio n. 7
0
            agg_image_name = (image_name + "_agg_tm"
                              + str(time_tag(time.time()))
                              + IMAGE_FILE_SUFFIX)
            '''
            file = open(SERVER_LOCAL_ADV_IMAGES_PATH+adv_image_name_list[0], 'rb')
            agg_image_data = file.read()
            file.close()

            # Save adv image to local storage first
            agg_image_file = open(SERVER_LOCAL_AGGREGATED_IMAGES_PATH + agg_image_name, "wb")
            agg_image_file.write(agg_image_data)
            agg_image_file.close()
            print("Aggregated image " + agg_image_name + " created!")
            '''
            global_original_image = cv2.imread(SERVER_LOCAL_ORIGINAL_IMAGES_PATH+image_name+'.jpg', 1)
            preprocess_global_original_image = preprocess_image(global_original_image)
            server_local_adv_noise = []
            for i in range(len(adv_image_name_list)):
                local_adv_image = cv2.imread(SERVER_LOCAL_ADV_IMAGES_PATH+adv_image_name_list[i]+'.jpg', 1)
                preprocess_local_adv_image = preprocess_image(global_original_image)
                server_local_adv_noise.append(local_adv_image - preprocess_globale_original_image)

            # aggregation
            global_aggregated_image =\
                aggregate_adv_noise(preprocess_global_original_image, server_local_adv_noise)

            recreated_global_aggregated_image = recreate_image(global_aggregated_image)

            # Save adv image to local storage first
            cv2.imwrite(SERVER_LOCAL_AGGREGATED_IMAGES_PATH + agg_image_name,\
                recreated_global_aggregated_image)
import numpy as np

from ssd import SSD300
from utils.utils import read_image
from utils.utils import resize_image
from utils.utils import preprocess_image

model = SSD300()
weights_filename = '../trained_models/model_checkpoints/weights.hdf5'
model.load_weights(weights_filename)
image_size = model.input_shape[1:3]
image_filename = '../images/008745.jpg'
image_array = read_image(image_filename)
image_array = resize_image(image_array, image_size)
image_array = image_array.astype('float32')
image_array = np.expand_dims(image_array, 0)
image_array = preprocess_image(image_array)
predictions = model.predict([image_array])
predictions = np.squeeze(predictions)
predicted_classes = predictions[:, 4:]
best_classes = np.argmax(predicted_classes, axis=1)
positive_mask = best_classes != 0
Esempio n. 9
0
        ######################################################################
        # The start of generating adversarial images
        # the input batch of images = image_list
        # the labels of the input batch images = label_list
        # the identifiers of the input batch images = identifier_list

        # please store the generated batch of adv images ==> adv_image_list, AS A NUMPY ARRAY!!!
        # please store the original labels of the batch ==> adv_label_list
        # please store the corresponding identifiers of the batch ==> adv_identifier_list
        # if you do not change the order the images, then
        # it should be "adv_identifier_list == identifier_list" and "adv_label_list==label_list"

        # Prepare data to input in the neural network:
        x = torch.stack(
            [preprocess_image(np.array(image)) for image in image_list])
        y = torch.from_numpy(np.array(label_list)).long()

        # Define the model and device of local machine, the following is a toy example
        Generate_Adv = GenAdv(net, device, F.cross_entropy)
        adv_image_list, adv_label_list = Generate_Adv.generate_adv(x, y)

        # Recreate images from transformed images.
        adv_image_list = np.stack(
            [recreate_image(adv_image) for adv_image in adv_image_list])
        adv_label_list = np.array(adv_label_list.numpy(), dtype=int)
        adv_identifier_list = np.array(identifier_list)

        # Save adv image to local storage first
        #adv_file_name = "adv0_tm425635841.h5"
        adv_file_name = f"adv{str(adv_num)}_tm{str(time_tag(time.time()))}.h5"
def test_kitti_depth(data_list_file,
                     img_dir,
                     height,
                     width,
                     restore_dp_model,
                     save_dir,
                     depth_test_split='eigen',
                     num_input_threads=8):
    print('[Info] Evaluate kitti depth...')
    print('[Info] Reading datalist from:', data_list_file)
    print('[Info] Loading images from:', img_dir)
    print('[Info] Reshaing image to size: ({}, {})'.format(height, width))

    dataset = BasicDataset(img_height=height,
                           img_width=width,
                           data_list_file=data_list_file,
                           img_dir=img_dir)
    iterator = dataset.create_one_shot_iterator_depth_kitti(
        dataset.data_list, num_parallel_calls=num_input_threads)
    img1 = iterator.get_next()
    img1 = tf.image.resize_images(img1, [height, width], method=0)
    img1 = preprocess_image(img1)

    with tf.variable_scope(tf.get_variable_scope()) as vs:
        pred_disp_1, _ = D_Net(img1, is_training=False, reuse=False)
        pred_depth_1 = [1. / disp for disp in pred_disp_1]
        pred_depth_1 = pred_depth_1[0]

    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    restore_vars = tf.trainable_variables()
    # Add batchnorm variables.
    bn_vars = [
        v for v in tf.global_variables()
        if 'moving_mean' in v.op.name or 'moving_variance' in v.op.name
        or 'mu' in v.op.name or 'sigma' in v.op.name
    ]
    restore_vars.extend(bn_vars)

    # restore_vars = [var for var in tf.trainable_variables()]
    print('[Info] Restoring model:', restore_dp_model)
    saver = tf.train.Saver(max_to_keep=1)

    # for var in tf.trainable_variables():
    #     print(var.name)

    init_assign_op, init_feed_dict = slim.assign_from_checkpoint(
        restore_dp_model, restore_vars)

    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
                                            log_device_placement=False))
    # sess.run(tf.global_variables_initializer())
    # sess.run(tf.local_variables_initializer())
    sess.run(iterator.initializer)
    sess.run(init_assign_op, init_feed_dict)
    # saver.restore(sess, restore_dp_model)

    depth_path = "%s/depth" % save_dir
    if not os.path.exists(depth_path):
        os.mkdir(depth_path)

    pred_all = []
    print("[Info] Data number:", dataset.data_num)
    start_time = time.time()
    for i in range(dataset.data_num):
        np_pred_depth_1 = sess.run(pred_depth_1)
        np_pred_depth_1 = np_pred_depth_1[0, :, :, 0]
        pred_all.append(np_pred_depth_1)

    print("[Info] FPS: %.3f" % (dataset.data_num / (time.time() - start_time)))

    # save_path = save_dir + '/ckpt_' + restore_dp_model.split('/')[-2] + '_' + restore_dp_model.split('/')[-1]
    save_path = save_dir + '/test_kitti'
    print('[Info] Saving to {}.npy'.format(save_path))
    np.save(save_path, pred_all)
Esempio n. 11
0
    def predictcmnd(self, image):

        # check cccd
        """
        =========================================
        ===== Crop and align id card image
        =========================================
        """
        request = predict_pb2.PredictRequest()
        # model_name
        request.model_spec.name = "cropper_cmnd_model"
        # signature name, default is 'serving_default'
        request.model_spec.signature_name = "serving_default"
        # preprocess image
        img, original_image, original_width, original_height = preprocess_image(
            image, Cropper.TARGET_SIZE)
        if img.ndim == 3:
            img = np.expand_dims(img, axis=0)
        # request to cropper model
        request.inputs["input_1"].CopyFrom(
            tf.make_tensor_proto(img, dtype=np.float32, shape=img.shape))
        try:
            result = self.stub.Predict(request, 10.0)
            result = result.outputs["tf_op_layer_concat_14"].float_val
            result = np.array(result).reshape((-1, 9))

        except Exception as e:
            print("Cropper cmnd = ", e)

        cropper = Cropper()
        cropper.set_best_bboxes(result,
                                original_width=original_width,
                                original_height=original_height,
                                iou_threshold=0.5)

        # respone to client if image is invalid
        if cropper.respone_client(threshold_idcard=0.8) == -1:
            # print(cropper.respone_client(threshold_idcard=0.8))
            return
        elif cropper.respone_client(threshold_idcard=0.8) == 0:
            # print("no cropper")
            # cv2.imwrite('app/static/aligned_images/' + filename, original_image)
            aligned_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
        else:
            # print("cropper image")
            cropper.set_image(original_image=original_image)
            # print("Cropper cmnd end")
            # output of cropper part
            aligned_image = getattr(cropper, "image_output")
            cv2.imwrite('storage/c.jpg', aligned_image)
            aligned_image = cv2.cvtColor(aligned_image, cv2.COLOR_BGR2RGB)
        """
        ===========================================
        ==== Detect informations in aligned image
        ===========================================
        """
        # preprocess aligned image
        original_height, original_width, _ = aligned_image.shape
        img = cv2.resize(aligned_image, Detector.TARGET_SIZE)
        img = np.float32(img / 255.)
        # model_name
        request.model_spec.name = "detector_cmnd_model"
        # signature name, default is 'serving_default'
        request.model_spec.signature_name = "serving_default"

        if img.ndim == 3:
            img = np.expand_dims(img, axis=0)
        # new request to detector model
        request.inputs["input_1"].CopyFrom(
            tf.make_tensor_proto(img, dtype=np.float32, shape=img.shape))

        try:
            # print("Detect cmnd = ok")
            result = self.stub.Predict(request, 10.0)
            result = result.outputs["tf_op_layer_concat_14"].float_val
            result = np.array(result).reshape((-1, 13))
            # print("Detect cmnd = end")

        except Exception as e:
            print("Detect cmnd = ", e)

        detector = Detector()
        detector.set_best_bboxes(result,
                                 original_width=original_width,
                                 original_height=original_height,
                                 iou_threshold=0.5)
        detector.set_info_images(original_image=aligned_image)
        # output of detector part
        info_images = getattr(detector, "info_images")
        return info_images
Esempio n. 12
0
    def train(self,
              train_mode=None,
              retrain=False,
              cont_model=None,
              restore_flow_model=None):
        seed = 8964
        tf.set_random_seed(seed)
        np.random.seed(seed)
        random.seed(seed)

        self.mode = train_mode
        """ Step 1. Loading the training data """
        with tf.Graph().as_default(), tf.device('/cpu:0'):
            global_step = tf.Variable(0, name="global_step", trainable=False)
            lr_decay = tf.train.exponential_decay(self.initial_learning_rate,
                                                  global_step,
                                                  decay_steps=self.decay_steps,
                                                  decay_rate=self.decay_rate,
                                                  staircase=True)
            optim = tf.train.AdamOptimizer(lr_decay, self.beta1)

            tower_grads = []

            if self.dataset == 'airsim':
                loader = AirSim_DataLoader(
                    dataset_dir=self.dataset_config['img_dir'],
                    img_height=self.img_height,
                    img_width=self.img_width,
                    batch_size=self.batch_size,
                    num_scales=self.num_scales,
                    num_source=self.num_source,
                    ext=self.dataset_config['ext'],
                    mode=train_mode)
            elif self.dataset == 'kitti':
                loader = DataLoader(dataset_dir=self.dataset_config['img_dir'],
                                    img_height=self.img_height,
                                    img_width=self.img_width,
                                    batch_size=self.batch_size,
                                    num_scales=self.num_scales,
                                    num_source=self.num_source,
                                    ext=self.dataset_config['ext'],
                                    mode=train_mode)

            if train_mode == "train_flow":
                self.tgt_image, self.src_image_stack = loader.load_train_batch(
                )

                # print("[!] tgt_image:", self.tgt_image)
                # print("[!] src_image_stack:", self.src_image_stack)
                # Depth inputs: Feed photometric augmented image, [-1, 1]
                self.tgt_image = preprocess_image(self.tgt_image)
                self.src_image_stack = preprocess_image(self.src_image_stack)

                split_tgt_image = tf.split(axis=0,
                                           num_or_size_splits=self.num_gpus,
                                           value=self.tgt_image)
                split_src_image_stack = tf.split(
                    axis=0,
                    num_or_size_splits=self.num_gpus,
                    value=self.src_image_stack)
                split_tgt_image_norm = [None] * self.num_gpus
                split_src_image_stack_norm = [None] * self.num_gpus
                split_cam2pix = [None] * self.num_gpus
                split_pix2cam = [None] * self.num_gpus
            elif train_mode == "train_dp":
                self.image_stack, self.image_stack_norm, self.proj_cam2pix, self.proj_pix2cam = loader.load_train_batch(
                )

                if self.num_source == 2:
                    """ 3 frames """
                    self.tgt_image = self.image_stack[:, :, :, 3:6]
                    src0_image = self.image_stack[:, :, :, 0:3]
                    src1_image = self.image_stack[:, :, :, 6:9]
                    self.src_image_stack = tf.concat([src0_image, src1_image],
                                                     axis=3)

                    self.tgt_image_norm = self.image_stack_norm[:, :, :, 3:6]
                    src0_image_norm = self.image_stack_norm[:, :, :, 0:3]
                    src1_image_norm = self.image_stack_norm[:, :, :, 6:9]
                    self.src_image_stack_norm = tf.concat(
                        [src0_image_norm, src1_image_norm], axis=3)
                elif self.num_source == 4:
                    """ 5 frames """
                    self.tgt_image = self.image_stack[:, :, :, 6:9]
                    src0_image = self.image_stack[:, :, :, 0:3]
                    src1_image = self.image_stack[:, :, :, 3:6]
                    src2_image = self.image_stack[:, :, :, 9:12]
                    src3_image = self.image_stack[:, :, :, 12:15]
                    self.src_image_stack = tf.concat(
                        [src0_image, src1_image, src2_image, src3_image],
                        axis=3)

                    self.tgt_image_norm = self.image_stack_norm[:, :, :, 6:9]
                    src0_image_norm = self.image_stack_norm[:, :, :, 0:3]
                    src1_image_norm = self.image_stack_norm[:, :, :, 3:6]
                    src2_image_norm = self.image_stack_norm[:, :, :, 9:12]
                    src3_image_norm = self.image_stack_norm[:, :, :, 12:15]
                    self.src_image_stack_norm = tf.concat([
                        src0_image_norm, src1_image_norm, src2_image_norm,
                        src3_image_norm
                    ],
                                                          axis=3)

                split_tgt_image = tf.split(axis=0,
                                           num_or_size_splits=self.num_gpus,
                                           value=self.tgt_image)
                split_src_image_stack = tf.split(
                    axis=0,
                    num_or_size_splits=self.num_gpus,
                    value=self.src_image_stack)
                split_tgt_image_norm = tf.split(
                    axis=0,
                    num_or_size_splits=self.num_gpus,
                    value=self.tgt_image_norm)
                split_src_image_stack_norm = tf.split(
                    axis=0,
                    num_or_size_splits=self.num_gpus,
                    value=self.src_image_stack_norm)
                split_cam2pix = tf.split(axis=0,
                                         num_or_size_splits=self.num_gpus,
                                         value=self.proj_cam2pix)  # K
                split_pix2cam = tf.split(axis=0,
                                         num_or_size_splits=self.num_gpus,
                                         value=self.proj_pix2cam)  # K_inverse

            summaries_cpu = tf.get_collection(tf.GraphKeys.SUMMARIES,
                                              tf.get_variable_scope().name)
            """ Step 2. Building model """
            if self.num_source == 2:
                print("[!] Loading the model for 3 frames...")
                from model.model_3frames import Model
            elif self.num_source == 4:
                print("[!] Loading the model for 5 frames...")
                from model.model_5frames import Model

            with tf.variable_scope(tf.get_variable_scope()) as vs:
                print('variable_scope(vs):', vs.name)
                for i in xrange(self.num_gpus):  #0 1
                    with tf.device('/gpu:%d' % i):
                        if i == self.num_gpus - 1:  #1
                            scopename = "model"
                        else:
                            scopename = '%s_%d' % ("tower", i)

                        with tf.name_scope(scopename) as ns:
                            if i == 0:
                                # Build models
                                model = Model(
                                    split_tgt_image[i],
                                    split_src_image_stack[i],
                                    split_tgt_image_norm[i],
                                    split_src_image_stack_norm[i],
                                    split_cam2pix[i],
                                    split_pix2cam[i],
                                    batch_size=self.batch_size_per_gpu,
                                    img_height=self.img_height,
                                    img_width=self.img_width,
                                    mode=train_mode,
                                    reuse_scope=False,
                                    scope=vs)

                                var_pose = list(
                                    set(
                                        tf.get_collection(
                                            tf.GraphKeys.TRAINABLE_VARIABLES,
                                            scope=".*pose_net.*")))
                                var_depth = list(
                                    set(
                                        tf.get_collection(
                                            tf.GraphKeys.TRAINABLE_VARIABLES,
                                            scope=
                                            ".*(depth_net|feature_net_disp).*")
                                    ))
                                var_flow = list(
                                    set(
                                        tf.get_collection(
                                            tf.GraphKeys.TRAINABLE_VARIABLES,
                                            scope=
                                            ".*(flow_net|feature_net_flow).*"))
                                )

                                if self.mode == 'train_flow':
                                    var_train_list = var_flow
                                elif self.mode == 'train_dp':
                                    var_train_list = var_pose + var_depth
                                elif self.mode == 'train_all':
                                    var_train_list = var_pose + var_depth + var_flow
                            else:
                                model = Model(
                                    split_tgt_image[i],
                                    split_src_image_stack[i],
                                    split_tgt_image_norm[i],
                                    split_src_image_stack_norm[i],
                                    split_cam2pix[i],
                                    split_pix2cam[i],
                                    batch_size=self.batch_size_per_gpu,
                                    img_height=self.img_height,
                                    img_width=self.img_width,
                                    mode=train_mode,
                                    reuse_scope=True,
                                    scope=vs)

                            # Parameter Count
                            param_total = tf.reduce_sum([
                                tf.reduce_prod(tf.shape(v))
                                for v in var_train_list
                            ])
                            param_depth = tf.reduce_sum([
                                tf.reduce_prod(tf.shape(v)) for v in var_depth
                            ])
                            param_pose = tf.reduce_sum([
                                tf.reduce_prod(tf.shape(v)) for v in var_pose
                            ])
                            param_flow = tf.reduce_sum([
                                tf.reduce_prod(tf.shape(v)) for v in var_flow
                            ])

                            # get loss
                            loss = model.losses

                            # Retain the summaries from the final tower.
                            if i == self.num_gpus - 1:
                                summaries = tf.get_collection(
                                    tf.GraphKeys.SUMMARIES, ns)
                                # eval_model = Model_eval(scope=vs)

                            # Calculate the gradients for the batch of data on this CIFAR tower.
                            grads = optim.compute_gradients(
                                loss, var_list=var_train_list)

                            # Keep track of the gradients across all towers.
                            tower_grads.append(grads)

            grads = average_gradients(tower_grads)
            # grads = [(tf.clip_by_norm(grad, 0.1), var) for grad, var in grads]

            # Apply the gradients to adjust the shared variables.
            update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
            with tf.control_dependencies(update_ops):
                apply_gradient_op = optim.apply_gradients(
                    grads, global_step=global_step)

            # Create a saver.
            saver = tf.train.Saver(max_to_keep=50)

            # Build the summary operation from the last tower summaries.
            summary_op = tf.summary.merge(summaries + summaries_cpu)

            # Make training session.
            config = tf.ConfigProto(allow_soft_placement=True,
                                    log_device_placement=False)
            #             config.gpu_options.per_process_gpu_memory_fraction = 0.8
            sess = tf.Session(config=config)

            summary_writer = tf.summary.FileWriter(logdir='/'.join(
                [self.summary_dir, 'train', self.model_name]),
                                                   graph=sess.graph,
                                                   flush_secs=10)

            sess.run(tf.global_variables_initializer())
            sess.run(tf.local_variables_initializer())

            print("[Info] Model size:     {:.5f}M".format(
                sess.run(param_total) / 1000000.0))
            print("[Info] Depth net size: {:.5f}M".format(
                sess.run(param_depth) / 1000000.0))
            print("[Info] Pose net size:  {:.5f}M".format(
                sess.run(param_pose) / 1000000.0))
            print("[Info] Flow net size:  {:.5f}M".format(
                sess.run(param_flow) / 1000000.0))

            if cont_model != None:
                """ Continue training from a checkpoint """
                print("[Info] Continue training. Restoreing:", cont_model)
                saver = tf.train.Saver(max_to_keep=10)
                saver.restore(sess, cont_model)
            else:
                if self.mode == 'train_dp':
                    print("[Info] Restoreing pretrained flow weights from:",
                          restore_flow_model)
                    saver_flow = tf.train.Saver(tf.get_collection(
                        tf.GraphKeys.MODEL_VARIABLES,
                        scope=".*(flow_net|feature_net_flow).*"),
                                                max_to_keep=1)
                    saver_flow.restore(sess, restore_flow_model)
                elif self.mode == 'train_all':
                    print("[Info] Restoreing:", restore_flow_model)
                    saver_rest = tf.train.Saver(list(
                        set(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)) -
                        set(
                            tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                              scope=".*(Adam_1|Adam).*"))),
                                                max_to_keep=1)
                    saver_rest.restore(sess, restore_flow_model)

            if retrain:
                sess.run(global_step.assign(0))

            start_itr = global_step.eval(session=sess)
            tf.train.start_queue_runners(sess)
            """ Step 3. Training """
            steps_per_epoch = loader.steps_per_epoch
            last_summary_time = time.time()
            start_time = time.time()
            for itr in range(start_itr, self.iter_steps):
                fetches = {
                    'train_op': apply_gradient_op,
                    'grads': grads,
                    'global_step': global_step,
                    'lr_decay': lr_decay
                }

                if np.mod(itr, self.write_summary_interval) == 0:
                    fetches['summary_str'] = summary_op
                    fetches['summary_scalar_str'] = model.summ_op

                if np.mod(itr, self.display_log_interval) == 0:
                    fetches['loss'] = loss

                results = sess.run(fetches)
                gs = results['global_step']

                # print(results['valid_src0'])

                if np.mod(itr, self.write_summary_interval) == 0:
                    summary_writer.add_summary(results['summary_scalar_str'],
                                               itr)
                    summary_writer.add_summary(results['summary_str'], itr)

                if np.mod(itr, self.display_log_interval) == 0:
                    train_epoch = math.ceil(gs / steps_per_epoch)
                    train_step = gs - (train_epoch - 1) * steps_per_epoch
                    this_cycle = time.time() - last_summary_time
                    last_summary_time += this_cycle
                    print('Epoch: [%2d] [%5d/%5d] total steps:[%6d] lr:[%2.8f] time: %4.2fs (%ds total) loss: %.3f' % \
                        (train_epoch, train_step, steps_per_epoch, gs, results['lr_decay'], this_cycle, time.time() - start_time, results['loss']))

                if np.mod(itr, steps_per_epoch) == 0:
                    print('[Info] Saving checkpoint to %s ...' %
                          self.checkpoint_dir)
                    saver.save(sess,
                               '/'.join([
                                   self.checkpoint_dir, self.model_name,
                                   'model'
                               ]),
                               global_step=gs)