Esempio n. 1
0
def show_landmark_heatmaps(pred_heatmaps, gt_heatmaps, nimgs, f=1.0):

    vmax = 1.0
    rows_heatmaps = []
    if gt_heatmaps is not None:
        vmax = gt_heatmaps.max()
        if len(gt_heatmaps[0].shape) == 2:
            gt_heatmaps = [
                vis.color_map(hm, vmin=0, vmax=vmax, cmap=plt.cm.jet)
                for hm in gt_heatmaps
            ]
        nCols = 1 if len(gt_heatmaps) == 1 else nimgs
        rows_heatmaps.append(
            cv2.resize(vis.make_grid(gt_heatmaps, nCols=nCols, padval=0),
                       None,
                       fx=f,
                       fy=f))

    disp_pred_heatmaps = pred_heatmaps
    if len(pred_heatmaps[0].shape) == 2:
        disp_pred_heatmaps = [
            vis.color_map(hm, vmin=0, vmax=vmax, cmap=plt.cm.jet)
            for hm in pred_heatmaps
        ]
    nCols = 1 if len(pred_heatmaps) == 1 else nimgs
    rows_heatmaps.append(
        cv2.resize(vis.make_grid(disp_pred_heatmaps, nCols=nCols, padval=0),
                   None,
                   fx=f,
                   fy=f))

    cv2.imshow('Landmark heatmaps',
               cv2.cvtColor(np.vstack(rows_heatmaps), cv2.COLOR_RGB2BGR))
Esempio n. 2
0
 def add_confs(disp_X_recon, lmids, loc):
     means = lm_confs[:, lmids].mean(axis=1)
     colors = vis.color_map(to_numpy(1 - means),
                            cmap=plt.cm.jet,
                            vmin=0.0,
                            vmax=0.4)
     return vis.add_error_to_images(disp_X_recon,
                                    means,
                                    loc=loc,
                                    format_string='{:>4.2f}',
                                    colors=colors)
    def visualize_batch(self,
                        batch,
                        X_recon,
                        ssim_maps,
                        nimgs=8,
                        ds=None,
                        wait=0):

        nimgs = min(nimgs, len(batch))
        train_state_D = self.saae.D.training
        train_state_Q = self.saae.Q.training
        train_state_P = self.saae.P.training
        self.saae.D.eval()
        self.saae.Q.eval()
        self.saae.P.eval()

        loc_err_gan = "tr"
        text_size_errors = 0.65

        input_images = vis.reconstruct_images(batch.images[:nimgs])
        show_filenames = batch.filenames[:nimgs]
        target_images = (batch.target_images
                         if batch.target_images is not None else batch.images)
        disp_images = vis.reconstruct_images(target_images[:nimgs])

        # draw GAN score
        if self.args.with_gan:
            with torch.no_grad():
                err_gan_inputs = self.saae.D(batch.images[:nimgs])
            disp_images = vis.add_error_to_images(
                disp_images,
                errors=1 - err_gan_inputs,
                loc=loc_err_gan,
                format_string="{:>5.2f}",
                vmax=1.0,
            )

        # disp_images = vis.add_landmarks_to_images(disp_images, batch.landmarks[:nimgs], color=(0,1,0), radius=1,
        #                                           draw_wireframe=False)
        rows = [vis.make_grid(disp_images, nCols=nimgs, normalize=False)]

        recon_images = vis.reconstruct_images(X_recon[:nimgs])
        disp_X_recon = recon_images.copy()

        print_stats = True
        if print_stats:
            # lm_ssim_errs = None
            # if batch.landmarks is not None:
            #     lm_recon_errs = lmutils.calc_landmark_recon_error(batch.images[:nimgs], X_recon[:nimgs], batch.landmarks[:nimgs], reduction='none')
            #     disp_X_recon = vis.add_error_to_images(disp_X_recon, lm_recon_errs, size=text_size_errors, loc='bm',
            #                                            format_string='({:>3.1f})', vmin=0, vmax=10)
            #     lm_ssim_errs = lmutils.calc_landmark_ssim_error(batch.images[:nimgs], X_recon[:nimgs], batch.landmarks[:nimgs])
            #     disp_X_recon = vis.add_error_to_images(disp_X_recon, lm_ssim_errs.mean(axis=1), size=text_size_errors, loc='bm-1',
            #                                            format_string='({:>3.2f})', vmin=0.2, vmax=0.8)

            X_recon_errs = 255.0 * torch.abs(batch.images - X_recon).reshape(
                len(batch.images), -1).mean(dim=1)
            # disp_X_recon = vis.add_landmarks_to_images(disp_X_recon, batch.landmarks[:nimgs], radius=1, color=None,
            #                                            lm_errs=lm_ssim_errs, draw_wireframe=False)
            disp_X_recon = vis.add_error_to_images(
                disp_X_recon[:nimgs],
                errors=X_recon_errs,
                size=text_size_errors,
                format_string="{:>4.1f}",
            )
            if self.args.with_gan:
                with torch.no_grad():
                    err_gan = self.saae.D(X_recon[:nimgs])
                disp_X_recon = vis.add_error_to_images(
                    disp_X_recon,
                    errors=1 - err_gan,
                    loc=loc_err_gan,
                    format_string="{:>5.2f}",
                    vmax=1.0,
                )

            ssim = np.zeros(nimgs)
            for i in range(nimgs):
                data_range = 255.0 if input_images[0].dtype == np.uint8 else 1.0
                ssim[i] = compare_ssim(
                    input_images[i],
                    recon_images[i],
                    data_range=data_range,
                    multichannel=True,
                )
            disp_X_recon = vis.add_error_to_images(
                disp_X_recon,
                1 - ssim,
                loc="bl-1",
                size=text_size_errors,
                format_string="{:>4.2f}",
                vmin=0.2,
                vmax=0.8,
            )

            if ssim_maps is not None:
                disp_X_recon = vis.add_error_to_images(
                    disp_X_recon,
                    ssim_maps.reshape(len(ssim_maps), -1).mean(axis=1),
                    size=text_size_errors,
                    loc="bl-2",
                    format_string="{:>4.2f}",
                    vmin=0.0,
                    vmax=0.4,
                )

        rows.append(vis.make_grid(disp_X_recon, nCols=nimgs))

        if ssim_maps is not None:
            disp_ssim_maps = to_numpy(
                nn.denormalized(ssim_maps)[:nimgs].transpose(0, 2, 3, 1))
            if disp_ssim_maps.shape[3] == 1:
                disp_ssim_maps = disp_ssim_maps.repeat(3, axis=3)
            for i in range(len(disp_ssim_maps)):
                disp_ssim_maps[i] = vis.color_map(
                    disp_ssim_maps[i].mean(axis=2), vmin=0.0, vmax=2.0)
            grid_ssim_maps = vis.make_grid(disp_ssim_maps, nCols=nimgs)
            cv2.imwrite("ssim errors.jpg",
                        cv2.cvtColor(grid_ssim_maps, cv2.COLOR_RGB2BGR))

        self.saae.D.train(train_state_D)
        self.saae.Q.train(train_state_Q)
        self.saae.P.train(train_state_P)

        f = 1
        disp_rows = vis.make_grid(rows, nCols=1, normalize=False, fx=f, fy=f)
        wnd_title = "recon errors "
        if ds is not None:
            wnd_title += ds.__class__.__name__
        cv2.imwrite(wnd_title + ".jpg",
                    cv2.cvtColor(disp_rows, cv2.COLOR_RGB2BGR))
        cv2.waitKey(wait)
Esempio n. 4
0
def visualize_batch(images,
                    landmarks,
                    X_recon,
                    X_lm_hm,
                    lm_preds_max,
                    lm_heatmaps=None,
                    images_mod=None,
                    lm_preds_cnn=None,
                    ds=None,
                    wait=0,
                    ssim_maps=None,
                    landmarks_to_draw=lmcfg.ALL_LANDMARKS,
                    ocular_norm='outer',
                    horizontal=False,
                    f=1.0,
                    overlay_heatmaps_input=False,
                    overlay_heatmaps_recon=False,
                    clean=False):

    gt_color = (0, 255, 0)
    pred_color = (0, 0, 255)

    nimgs = min(10, len(images))
    images = nn.atleast4d(images)[:nimgs]
    nme_per_lm = None
    if landmarks is None:
        # print('num landmarks', lmcfg.NUM_LANDMARKS)
        lm_gt = np.zeros((nimgs, lmcfg.NUM_LANDMARKS, 2))
    else:
        lm_gt = nn.atleast3d(to_numpy(landmarks))[:nimgs]
        nme_per_lm = calc_landmark_nme(lm_gt,
                                       lm_preds_max[:nimgs],
                                       ocular_norm=ocular_norm)
        lm_ssim_errs = 1 - calc_landmark_ssim_score(images, X_recon[:nimgs],
                                                    lm_gt)

    lm_confs = None
    # show landmark heatmaps
    pred_heatmaps = None
    if X_lm_hm is not None:
        pred_heatmaps = to_single_channel_heatmap(to_numpy(X_lm_hm[:nimgs]))
        pred_heatmaps = [
            cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_NEAREST)
            for im in pred_heatmaps
        ]
        gt_heatmaps = None
        if lm_heatmaps is not None:
            gt_heatmaps = to_single_channel_heatmap(
                to_numpy(lm_heatmaps[:nimgs]))
            gt_heatmaps = np.array([
                cv2.resize(im,
                           None,
                           fx=f,
                           fy=f,
                           interpolation=cv2.INTER_NEAREST)
                for im in gt_heatmaps
            ])
        show_landmark_heatmaps(pred_heatmaps, gt_heatmaps, nimgs, f=1)
        lm_confs = to_numpy(X_lm_hm).reshape(X_lm_hm.shape[0],
                                             X_lm_hm.shape[1], -1).max(axis=2)

    # resize images for display and scale landmarks accordingly
    lm_preds_max = lm_preds_max[:nimgs] * f
    if lm_preds_cnn is not None:
        lm_preds_cnn = lm_preds_cnn[:nimgs] * f
    lm_gt *= f

    input_images = vis._to_disp_images(images[:nimgs], denorm=True)
    if images_mod is not None:
        disp_images = vis._to_disp_images(images_mod[:nimgs], denorm=True)
    else:
        disp_images = vis._to_disp_images(images[:nimgs], denorm=True)
    disp_images = [
        cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_NEAREST)
        for im in disp_images
    ]

    recon_images = vis._to_disp_images(X_recon[:nimgs], denorm=True)
    disp_X_recon = [
        cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_NEAREST)
        for im in recon_images.copy()
    ]

    # overlay landmarks on input images
    if pred_heatmaps is not None and overlay_heatmaps_input:
        disp_images = [
            vis.overlay_heatmap(disp_images[i], pred_heatmaps[i])
            for i in range(len(pred_heatmaps))
        ]
    if pred_heatmaps is not None and overlay_heatmaps_recon:
        disp_X_recon = [
            vis.overlay_heatmap(disp_X_recon[i], pred_heatmaps[i])
            for i in range(len(pred_heatmaps))
        ]

    #
    # Show input images
    #
    disp_images = vis.add_landmarks_to_images(disp_images,
                                              lm_gt[:nimgs],
                                              color=gt_color)
    disp_images = vis.add_landmarks_to_images(disp_images,
                                              lm_preds_max[:nimgs],
                                              lm_errs=nme_per_lm,
                                              color=pred_color,
                                              draw_wireframe=False,
                                              gt_landmarks=lm_gt,
                                              draw_gt_offsets=True)

    # disp_images = vis.add_landmarks_to_images(disp_images, lm_gt[:nimgs], color=(1,1,1), radius=1,
    #                                           draw_dots=True, draw_wireframe=True, landmarks_to_draw=landmarks_to_draw)
    # disp_images = vis.add_landmarks_to_images(disp_images, lm_preds_max[:nimgs], lm_errs=nme_per_lm,
    #                                           color=(1.0, 0.0, 0.0),
    #                                           draw_dots=True, draw_wireframe=True, radius=1,
    #                                           gt_landmarks=lm_gt, draw_gt_offsets=False,
    #                                           landmarks_to_draw=landmarks_to_draw)

    #
    # Show reconstructions
    #
    X_recon_errs = 255.0 * torch.abs(images - X_recon[:nimgs]).reshape(
        len(images), -1).mean(dim=1)
    if not clean:
        disp_X_recon = vis.add_error_to_images(disp_X_recon[:nimgs],
                                               errors=X_recon_errs,
                                               format_string='{:>4.1f}')

    # modes of heatmaps
    # disp_X_recon = [overlay_heatmap(disp_X_recon[i], pred_heatmaps[i]) for i in range(len(pred_heatmaps))]
    if not clean:
        lm_errs_max = calc_landmark_nme_per_img(
            lm_gt,
            lm_preds_max,
            ocular_norm=ocular_norm,
            landmarks_to_eval=lmcfg.LANDMARKS_NO_OUTLINE)
        lm_errs_max_outline = calc_landmark_nme_per_img(
            lm_gt,
            lm_preds_max,
            ocular_norm=ocular_norm,
            landmarks_to_eval=lmcfg.LANDMARKS_ONLY_OUTLINE)
        lm_errs_max_all = calc_landmark_nme_per_img(
            lm_gt,
            lm_preds_max,
            ocular_norm=ocular_norm,
            landmarks_to_eval=lmcfg.ALL_LANDMARKS)
        disp_X_recon = vis.add_error_to_images(disp_X_recon,
                                               lm_errs_max,
                                               loc='br-2',
                                               format_string='{:>5.2f}',
                                               vmax=15)
        disp_X_recon = vis.add_error_to_images(disp_X_recon,
                                               lm_errs_max_outline,
                                               loc='br-1',
                                               format_string='{:>5.2f}',
                                               vmax=15)
        disp_X_recon = vis.add_error_to_images(disp_X_recon,
                                               lm_errs_max_all,
                                               loc='br',
                                               format_string='{:>5.2f}',
                                               vmax=15)
    disp_X_recon = vis.add_landmarks_to_images(disp_X_recon,
                                               lm_gt,
                                               color=gt_color,
                                               draw_wireframe=True)

    # disp_X_recon = vis.add_landmarks_to_images(disp_X_recon, lm_preds_max[:nimgs],
    #                                            color=pred_color, draw_wireframe=False,
    #                                            lm_errs=nme_per_lm, lm_confs=lm_confs,
    #                                            lm_rec_errs=lm_ssim_errs, gt_landmarks=lm_gt,
    #                                            draw_gt_offsets=True, draw_dots=True)

    disp_X_recon = vis.add_landmarks_to_images(disp_X_recon,
                                               lm_preds_max[:nimgs],
                                               color=pred_color,
                                               draw_wireframe=True,
                                               gt_landmarks=lm_gt,
                                               draw_gt_offsets=True,
                                               lm_errs=nme_per_lm,
                                               draw_dots=True,
                                               radius=2)

    def add_confs(disp_X_recon, lmids, loc):
        means = lm_confs[:, lmids].mean(axis=1)
        colors = vis.color_map(to_numpy(1 - means),
                               cmap=plt.cm.jet,
                               vmin=0.0,
                               vmax=0.4)
        return vis.add_error_to_images(disp_X_recon,
                                       means,
                                       loc=loc,
                                       format_string='{:>4.2f}',
                                       colors=colors)

    # disp_X_recon = add_confs(disp_X_recon, lmcfg.LANDMARKS_NO_OUTLINE, 'bm-2')
    # disp_X_recon = add_confs(disp_X_recon, lmcfg.LANDMARKS_ONLY_OUTLINE, 'bm-1')
    # disp_X_recon = add_confs(disp_X_recon, lmcfg.ALL_LANDMARKS, 'bm')

    # print ssim errors
    ssim = np.zeros(nimgs)
    for i in range(nimgs):
        ssim[i] = compare_ssim(input_images[i],
                               recon_images[i],
                               data_range=1.0,
                               multichannel=True)
    if not clean:
        disp_X_recon = vis.add_error_to_images(disp_X_recon,
                                               1 - ssim,
                                               loc='bl-1',
                                               format_string='{:>4.2f}',
                                               vmax=0.8,
                                               vmin=0.2)
    # print ssim torch errors
    if ssim_maps is not None and not clean:
        disp_X_recon = vis.add_error_to_images(disp_X_recon,
                                               ssim_maps.reshape(
                                                   len(ssim_maps),
                                                   -1).mean(axis=1),
                                               loc='bl-2',
                                               format_string='{:>4.2f}',
                                               vmin=0.0,
                                               vmax=0.4)

    rows = [vis.make_grid(disp_images, nCols=nimgs, normalize=False)]
    rows.append(vis.make_grid(disp_X_recon, nCols=nimgs))

    if ssim_maps is not None:
        disp_ssim_maps = to_numpy(
            ds_utils.denormalized(ssim_maps)[:nimgs].transpose(0, 2, 3, 1))
        for i in range(len(disp_ssim_maps)):
            disp_ssim_maps[i] = vis.color_map(disp_ssim_maps[i].mean(axis=2),
                                              vmin=0.0,
                                              vmax=2.0)
        grid_ssim_maps = vis.make_grid(disp_ssim_maps, nCols=nimgs, fx=f, fy=f)
        cv2.imshow('ssim errors',
                   cv2.cvtColor(grid_ssim_maps, cv2.COLOR_RGB2BGR))

    if horizontal:
        assert (nimgs == 1)
        disp_rows = vis.make_grid(rows, nCols=2)
    else:
        disp_rows = vis.make_grid(rows, nCols=1)
    wnd_title = 'Predicted Landmarks '
    if ds is not None:
        wnd_title += ds.__class__.__name__
    cv2.imshow(wnd_title, cv2.cvtColor(disp_rows, cv2.COLOR_RGB2BGR))
    cv2.waitKey(wait)
Esempio n. 5
0
def visualize_batch(batch,
                    X_recon,
                    X_lm_hm,
                    lm_preds_max,
                    lm_preds_cnn=None,
                    ds=None,
                    wait=0,
                    ssim_maps=None,
                    landmarks_to_draw=lmcfg.LANDMARKS_TO_EVALUATE,
                    ocular_norm='pupil',
                    horizontal=False,
                    f=1.0):

    nimgs = min(10, len(batch))
    gt_color = (0, 1, 0)

    lm_confs = None
    # show landmark heatmaps
    pred_heatmaps = None
    if X_lm_hm is not None:
        pred_heatmaps = to_single_channel_heatmap(to_numpy(X_lm_hm[:nimgs]))
        pred_heatmaps = [
            cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_NEAREST)
            for im in pred_heatmaps
        ]
        if batch.lm_heatmaps is not None:
            gt_heatmaps = to_single_channel_heatmap(
                to_numpy(batch.lm_heatmaps[:nimgs]))
            gt_heatmaps = np.array([
                cv2.resize(im,
                           None,
                           fx=f,
                           fy=f,
                           interpolation=cv2.INTER_NEAREST)
                for im in gt_heatmaps
            ])
            show_landmark_heatmaps(pred_heatmaps, gt_heatmaps, nimgs, f=1)
        lm_confs = to_numpy(X_lm_hm).reshape(X_lm_hm.shape[0],
                                             X_lm_hm.shape[1], -1).max(axis=2)

    # scale landmarks
    lm_preds_max = lm_preds_max[:nimgs] * f
    if lm_preds_cnn is not None:
        lm_preds_cnn = lm_preds_cnn[:nimgs] * f
    lm_gt = to_numpy(batch.landmarks[:nimgs]) * f
    if lm_gt.shape[1] == 98:
        lm_gt = convert_landmarks(lm_gt, LM98_TO_LM68)

    input_images = vis._to_disp_images(batch.images[:nimgs], denorm=True)
    if batch.images_mod is not None:
        disp_images = vis._to_disp_images(batch.images_mod[:nimgs],
                                          denorm=True)
    else:
        disp_images = vis._to_disp_images(batch.images[:nimgs], denorm=True)
    disp_images = [
        cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_NEAREST)
        for im in disp_images
    ]

    recon_images = vis._to_disp_images(X_recon[:nimgs], denorm=True)
    disp_X_recon = [
        cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_NEAREST)
        for im in recon_images.copy()
    ]

    # draw landmarks to input images
    if pred_heatmaps is not None:
        disp_images = [
            vis.overlay_heatmap(disp_images[i], pred_heatmaps[i])
            for i in range(len(pred_heatmaps))
        ]

    nme_per_lm = calc_landmark_nme(lm_gt,
                                   lm_preds_max,
                                   ocular_norm=ocular_norm)
    lm_ssim_errs = calc_landmark_ssim_error(batch.images[:nimgs],
                                            X_recon[:nimgs],
                                            batch.landmarks[:nimgs])

    #
    # Show input images
    #
    disp_images = vis.add_landmarks_to_images(
        disp_images,
        lm_gt[:nimgs],
        color=gt_color,
        draw_dots=True,
        draw_wireframe=False,
        landmarks_to_draw=landmarks_to_draw)
    disp_images = vis.add_landmarks_to_images(
        disp_images,
        lm_preds_max[:nimgs],
        lm_errs=nme_per_lm,
        color=(0.0, 0.0, 1.0),
        draw_dots=True,
        draw_wireframe=False,
        gt_landmarks=lm_gt,
        draw_gt_offsets=True,
        landmarks_to_draw=landmarks_to_draw)

    # if lm_preds_cnn is not None:
    #     disp_images = vis.add_landmarks_to_images(disp_images, lm_preds_cnn, color=(1, 1, 0),
    #                                               gt_landmarks=lm_gt, draw_gt_offsets=False,
    #                                               draw_wireframe=True, landmarks_to_draw=landmarks_to_draw)

    rows = [vis.make_grid(disp_images, nCols=nimgs, normalize=False)]

    #
    # Show reconstructions
    #
    X_recon_errs = 255.0 * torch.abs(batch.images - X_recon).reshape(
        len(batch.images), -1).mean(dim=1)
    disp_X_recon = vis.add_error_to_images(disp_X_recon[:nimgs],
                                           errors=X_recon_errs,
                                           format_string='{:>4.1f}')

    # modes of heatmaps
    # disp_X_recon = [overlay_heatmap(disp_X_recon[i], pred_heatmaps[i]) for i in range(len(pred_heatmaps))]
    lm_errs_max = calc_landmark_nme_per_img(
        lm_gt,
        lm_preds_max,
        ocular_norm=ocular_norm,
        landmarks_to_eval=lmcfg.LANDMARKS_NO_OUTLINE)
    lm_errs_max_outline = calc_landmark_nme_per_img(
        lm_gt,
        lm_preds_max,
        ocular_norm=ocular_norm,
        landmarks_to_eval=lmcfg.LANDMARKS_ONLY_OUTLINE)
    lm_errs_max_all = calc_landmark_nme_per_img(
        lm_gt,
        lm_preds_max,
        ocular_norm=ocular_norm,
        landmarks_to_eval=lmcfg.ALL_LANDMARKS)
    disp_X_recon = vis.add_error_to_images(disp_X_recon,
                                           lm_errs_max,
                                           loc='br-2',
                                           format_string='{:>5.2f}',
                                           vmax=15)
    disp_X_recon = vis.add_error_to_images(disp_X_recon,
                                           lm_errs_max_outline,
                                           loc='br-1',
                                           format_string='{:>5.2f}',
                                           vmax=15)
    disp_X_recon = vis.add_error_to_images(disp_X_recon,
                                           lm_errs_max_all,
                                           loc='br',
                                           format_string='{:>5.2f}',
                                           vmax=15)
    disp_X_recon = vis.add_landmarks_to_images(
        disp_X_recon,
        lm_preds_max[:nimgs],
        color=(0, 0, 1),
        landmarks_to_draw=landmarks_to_draw,
        draw_wireframe=False,
        lm_errs=nme_per_lm,
        # lm_confs=lm_confs,
        lm_confs=1 - lm_ssim_errs,
        gt_landmarks=lm_gt,
        draw_gt_offsets=True,
        draw_dots=True)
    disp_X_recon = vis.add_landmarks_to_images(
        disp_X_recon,
        lm_gt,
        color=gt_color,
        draw_wireframe=False,
        landmarks_to_draw=landmarks_to_draw)

    # landmarks from CNN prediction
    if lm_preds_cnn is not None:
        nme_per_lm = calc_landmark_nme(lm_gt,
                                       lm_preds_cnn,
                                       ocular_norm=ocular_norm)
        disp_X_recon = vis.add_landmarks_to_images(
            disp_X_recon,
            lm_preds_cnn,
            color=(1, 1, 0),
            landmarks_to_draw=lmcfg.ALL_LANDMARKS,
            draw_wireframe=False,
            lm_errs=nme_per_lm,
            gt_landmarks=lm_gt,
            draw_gt_offsets=True,
            draw_dots=True,
            offset_line_color=(1, 1, 1))
        lm_errs_cnn = calc_landmark_nme_per_img(
            lm_gt,
            lm_preds_cnn,
            ocular_norm=ocular_norm,
            landmarks_to_eval=landmarks_to_draw)
        lm_errs_cnn_outline = calc_landmark_nme_per_img(
            lm_gt,
            lm_preds_cnn,
            ocular_norm=ocular_norm,
            landmarks_to_eval=lmcfg.LANDMARKS_ONLY_OUTLINE)
        lm_errs_cnn_all = calc_landmark_nme_per_img(
            lm_gt,
            lm_preds_cnn,
            ocular_norm=ocular_norm,
            landmarks_to_eval=lmcfg.ALL_LANDMARKS)
        disp_X_recon = vis.add_error_to_images(disp_X_recon,
                                               lm_errs_cnn,
                                               loc='tr',
                                               format_string='{:>5.2f}',
                                               vmax=15)
        disp_X_recon = vis.add_error_to_images(disp_X_recon,
                                               lm_errs_cnn_outline,
                                               loc='tr+1',
                                               format_string='{:>5.2f}',
                                               vmax=15)
        disp_X_recon = vis.add_error_to_images(disp_X_recon,
                                               lm_errs_cnn_all,
                                               loc='tr+2',
                                               format_string='{:>5.2f}',
                                               vmax=15)

    # print ssim errors
    ssim = np.zeros(nimgs)
    for i in range(nimgs):
        ssim[i] = compare_ssim(input_images[i],
                               recon_images[i],
                               data_range=1.0,
                               multichannel=True)
    disp_X_recon = vis.add_error_to_images(disp_X_recon,
                                           1 - ssim,
                                           loc='bl-1',
                                           format_string='{:>4.2f}',
                                           vmax=0.8,
                                           vmin=0.2)
    # print ssim torch errors
    if ssim_maps is not None:
        disp_X_recon = vis.add_error_to_images(disp_X_recon,
                                               ssim_maps.reshape(
                                                   len(ssim_maps),
                                                   -1).mean(axis=1),
                                               loc='bl-2',
                                               format_string='{:>4.2f}',
                                               vmin=0.0,
                                               vmax=0.4)

    rows.append(vis.make_grid(disp_X_recon, nCols=nimgs))

    if ssim_maps is not None:
        disp_ssim_maps = to_numpy(
            ds_utils.denormalized(ssim_maps)[:nimgs].transpose(0, 2, 3, 1))
        for i in range(len(disp_ssim_maps)):
            disp_ssim_maps[i] = vis.color_map(disp_ssim_maps[i].mean(axis=2),
                                              vmin=0.0,
                                              vmax=2.0)
        grid_ssim_maps = vis.make_grid(disp_ssim_maps, nCols=nimgs, fx=f, fy=f)
        cv2.imshow('ssim errors',
                   cv2.cvtColor(grid_ssim_maps, cv2.COLOR_RGB2BGR))

    X_gen_lm_hm = None
    X_gen_vis = None
    show_random_faces = False
    if show_random_faces:
        with torch.no_grad():
            z_random = self.enc_rand(nimgs, self.saae.z_dim).cuda()
            outputs = self.saae.P(z_random)
            X_gen_vis = outputs[:, :3]
            if outputs.shape[1] > 3:
                X_gen_lm_hm = outputs[:, 3:]
        disp_X_gen = to_numpy(
            ds_utils.denormalized(X_gen_vis)[:nimgs].permute(0, 2, 3, 1))

        if X_gen_lm_hm is not None:
            if lmcfg.LANDMARK_TARGET == 'colored':
                gen_heatmaps = [to_image(X_gen_lm_hm[i]) for i in range(nimgs)]
            elif lmcfg.LANDMARK_TARGET == 'multi_channel':
                X_gen_lm_hm = X_gen_lm_hm.max(dim=1)[0]
                gen_heatmaps = [to_image(X_gen_lm_hm[i]) for i in range(nimgs)]
            else:
                gen_heatmaps = [
                    to_image(X_gen_lm_hm[i, 0]) for i in range(nimgs)
                ]

            disp_X_gen = [
                vis.overlay_heatmap(disp_X_gen[i], gen_heatmaps[i])
                for i in range(len(pred_heatmaps))
            ]

            # inputs = torch.cat([X_gen_vis, X_gen_lm_hm.detach()], dim=1)
            inputs = X_gen_lm_hm.detach()

            # disabled for multi_channel LM targets
            # lm_gen_preds = self.saae.lm_coords(inputs).reshape(len(inputs), -1, 2)
            # disp_X_gen = vis.add_landmarks_to_images(disp_X_gen, lm_gen_preds[:nimgs], color=(0,1,1))

            disp_gen_heatmaps = [
                vis.color_map(hm, vmin=0, vmax=1.0) for hm in gen_heatmaps
            ]
            img_gen_heatmaps = cv2.resize(vis.make_grid(disp_gen_heatmaps,
                                                        nCols=nimgs,
                                                        padval=0),
                                          None,
                                          fx=1.0,
                                          fy=1.0)
            cv2.imshow('generated landmarks',
                       cv2.cvtColor(img_gen_heatmaps, cv2.COLOR_RGB2BGR))

        rows.append(vis.make_grid(disp_X_gen, nCols=nimgs))

    # self.saae.D.train(train_state_D)
    # self.saae.Q.train(train_state_Q)
    # self.saae.P.train(train_state_P)

    if horizontal:
        assert (nimgs == 1)
        disp_rows = vis.make_grid(rows, nCols=2)
    else:
        disp_rows = vis.make_grid(rows, nCols=1)
    wnd_title = 'recon errors '
    if ds is not None:
        wnd_title += ds.__class__.__name__
    cv2.imshow(wnd_title, cv2.cvtColor(disp_rows, cv2.COLOR_RGB2BGR))
    cv2.waitKey(wait)