def main(): glassLabel = 255 thicknessForEvaluation = 20 objects=('bank', 'bottle', 'bucket', 'glass', 'wineglass') basePath = '/media/2Tb/transparentBases/fixedOnTable/base/' base = utils.TODBase(basePath, objects) patchSizes = (5, 10, 20, 40, 100, 200, 400) fks = (10, 20, 50, 100, 200, 400, 800, 1600) allSamples = base.getSamples() evaluator = utils.Evaluator(len(patchSizes)) # evaluator = utils.Evaluator(len(fks)) for sample in allSamples: print sample.imageFilename groundTruthMask = sample.getGlassMask() if (groundTruthMask == None): continue [groundTruthDT, groundTruthEdgelsCount] = utils.mask2dtAndEdgelsCount(groundTruthMask) glassMask = groundTruthMask.copy() glassContours, hierarchy = cv2.findContours(glassMask, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE) glassContoursImage = np.zeros(glassMask.shape, np.uint8) cv2.drawContours(glassContoursImage, glassContours, -1, (255), thicknessForEvaluation) image = sample.getImage() for idx, size in enumerate(patchSizes): segmentation = computeVeksler(image, size) # for idx, k in enumerate(fks): # segmentation = computeFelzenszwalb(image, k) minSegmentation = cv2.erode(segmentation.astype(np.float32), None) maxSegmentation = cv2.dilate(segmentation.astype(np.float32), None) boundaries = 255 * (maxSegmentation - minSegmentation != 0).astype(np.uint8) boundaries[glassContoursImage == 0] = 0 boundariesEdgelsCount = len(np.nonzero(boundaries == 255)[0]) boundariesDT = cv2.distanceTransform(~boundaries, cv2.cv.CV_DIST_L1, cv2.cv.CV_DIST_MASK_PRECISE) [recallEdgels, precisionEdgels] = utils.computeRecallPrecisionEdgels(groundTruthDT, boundariesDT) evaluator.addObservation(idx, recallEdgels, groundTruthEdgelsCount, precisionEdgels, boundariesEdgelsCount) evaluator.computeStatistics() evaluator.printStatistics() evaluator.plot('veksler') # evaluator.plot('felz') utils.plt.show()
def main(args): num_classes = 1 size = [192, 192] # size of images thresh = 0.5 if args.out_dir: os.makedirs(args.out_dir, exist_ok=True) in_ = eddl.Input([3, size[0], size[1]]) out = SegNet(in_, num_classes) out_sigm = eddl.Sigmoid(out) net = eddl.Model([in_], [out_sigm]) eddl.build(net, eddl.adam(0.0001), ["cross_entropy"], ["mean_squared_error"], eddl.CS_GPU([1]) if args.gpu else eddl.CS_CPU()) eddl.summary(net) eddl.setlogfile(net, "skin_lesion_segmentation") training_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ecvl.AugMirror(0.5), ecvl.AugFlip(0.5), ecvl.AugRotate([-180, 180]), ecvl.AugAdditivePoissonNoise([0, 10]), ecvl.AugGammaContrast([0.5, 1.5]), ecvl.AugGaussianBlur([0, 0.8]), ecvl.AugCoarseDropout([0, 0.3], [0.02, 0.05], 0.5) ]) validation_augs = ecvl.SequentialAugmentationContainer( [ecvl.AugResizeDim(size)]) dataset_augs = ecvl.DatasetAugmentations( [training_augs, validation_augs, None]) print("Reading dataset") d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs) x = Tensor([args.batch_size, d.n_channels_, size[0], size[1]]) y = Tensor([args.batch_size, d.n_channels_gt_, size[0], size[1]]) num_samples_train = len(d.GetSplit()) num_batches_train = num_samples_train // args.batch_size d.SetSplit(ecvl.SplitType.validation) num_samples_validation = len(d.GetSplit()) num_batches_validation = num_samples_validation // args.batch_size indices = list(range(args.batch_size)) evaluator = utils.Evaluator() print("Starting training") for e in range(args.epochs): print("Epoch {:d}/{:d} - Training".format(e + 1, args.epochs), flush=True) d.SetSplit(ecvl.SplitType.training) eddl.reset_loss(net) s = d.GetSplit() random.shuffle(s) d.split_.training_ = s d.ResetAllBatches() for b in range(num_batches_train): print("Epoch {:d}/{:d} (batch {:d}/{:d}) - ".format( e + 1, args.epochs, b + 1, num_batches_train), end="", flush=True) d.LoadBatch(x, y) x.div_(255.0) y.div_(255.0) tx, ty = [x], [y] eddl.train_batch(net, tx, ty, indices) eddl.print_loss(net, b) print() print("Saving weights") eddl.save(net, "isic_segmentation_checkpoint_epoch_%s.bin" % e, "bin") d.SetSplit(ecvl.SplitType.validation) evaluator.ResetEval() print("Epoch %d/%d - Evaluation" % (e + 1, args.epochs), flush=True) for b in range(num_batches_validation): n = 0 print("Epoch {:d}/{:d} (batch {:d}/{:d}) ".format( e + 1, args.epochs, b + 1, num_batches_validation), end="", flush=True) d.LoadBatch(x, y) x.div_(255.0) y.div_(255.0) eddl.forward(net, [x]) output = eddl.getOutput(out_sigm) for k in range(args.batch_size): img = output.select([str(k)]) gt = y.select([str(k)]) img_np = np.array(img, copy=False) gt_np = np.array(gt, copy=False) iou = evaluator.BinaryIoU(img_np, gt_np, thresh=thresh) print("- IoU: %.6g " % iou, end="", flush=True) if args.out_dir: # C++ BinaryIoU modifies image as a side effect img_np[img_np >= thresh] = 1 img_np[img_np < thresh] = 0 img_t = ecvl.TensorToView(img) img_t.colortype_ = ecvl.ColorType.GRAY img_t.channels_ = "xyc" img.mult_(255.) # orig_img orig_img = x.select([str(k)]) orig_img.mult_(255.) orig_img_t = ecvl.TensorToImage(orig_img) orig_img_t.colortype_ = ecvl.ColorType.BGR orig_img_t.channels_ = "xyc" tmp, labels = ecvl.Image.empty(), ecvl.Image.empty() ecvl.CopyImage(img_t, tmp, ecvl.DataType.uint8) ecvl.ConnectedComponentsLabeling(tmp, labels) ecvl.CopyImage(labels, tmp, ecvl.DataType.uint8) contours = ecvl.FindContours(tmp) ecvl.CopyImage(orig_img_t, tmp, ecvl.DataType.uint8) tmp_np = np.array(tmp, copy=False) for cseq in contours: for c in cseq: tmp_np[c[0], c[1], 0] = 0 tmp_np[c[0], c[1], 1] = 0 tmp_np[c[0], c[1], 2] = 255 filename = d.samples_[d.GetSplit()[n]].location_[0] head, tail = os.path.splitext(os.path.basename(filename)) bname = "%s.png" % head output_fn = os.path.join(args.out_dir, bname) ecvl.ImWrite(output_fn, tmp) if e == 0: gt_t = ecvl.TensorToView(gt) gt_t.colortype_ = ecvl.ColorType.GRAY gt_t.channels_ = "xyc" gt.mult_(255.) gt_filename = d.samples_[d.GetSplit()[n]].label_path_ gt_fn = os.path.join(args.out_dir, os.path.basename(gt_filename)) ecvl.ImWrite(gt_fn, gt_t) n += 1 print() print("MIoU: %.6g" % evaluator.MeanMetric())
def main(args): num_classes = 1 size = [192, 192] # size of images thresh = 0.5 if args.out_dir: os.makedirs(args.out_dir, exist_ok=True) in_ = eddl.Input([3, size[0], size[1]]) out = SegNet(in_, num_classes) out_sigm = eddl.Sigmoid(out) net = eddl.Model([in_], [out_sigm]) eddl.build(net, eddl.adam(0.0001), ["cross_entropy"], ["mean_squared_error"], eddl.CS_GPU([1]) if args.gpu else eddl.CS_CPU()) eddl.summary(net) eddl.setlogfile(net, "skin_lesion_segmentation_inference") if not os.path.exists(args.ckpts): raise RuntimeError('Checkpoint "{}" not found'.format(args.ckpts)) eddl.load(net, args.ckpts, "bin") training_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ]) test_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ]) dataset_augs = ecvl.DatasetAugmentations([training_augs, None, test_augs]) print("Reading dataset") d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs) x = Tensor([args.batch_size, d.n_channels_, size[0], size[1]]) y = Tensor([args.batch_size, d.n_channels_gt_, size[0], size[1]]) print("Testing") d.SetSplit(ecvl.SplitType.test) num_samples_test = len(d.GetSplit()) num_batches_test = num_samples_test // args.batch_size evaluator = utils.Evaluator() evaluator.ResetEval() for b in range(num_batches_test): n = 0 print("Batch {:d}/{:d} ".format(b + 1, num_batches_test), end="", flush=True) d.LoadBatch(x, y) x.div_(255.0) y.div_(255.0) eddl.forward(net, [x]) output = eddl.getOutput(out_sigm) for k in range(args.batch_size): img = output.select([str(k)]) gt = y.select([str(k)]) img_np, gt_np = np.array(img, copy=False), np.array(gt, copy=False) iou = evaluator.BinaryIoU(img_np, gt_np, thresh=thresh) print("- IoU: %.6g " % iou, end="", flush=True) if args.out_dir: # C++ BinaryIoU modifies image as a side effect img_np[img_np >= thresh] = 1 img_np[img_np < thresh] = 0 img_t = ecvl.TensorToView(img) img_t.colortype_ = ecvl.ColorType.GRAY img_t.channels_ = "xyc" img.mult_(255.) # orig_img orig_img = x.select([str(k)]) orig_img.mult_(255.) orig_img_t = ecvl.TensorToImage(orig_img) orig_img_t.colortype_ = ecvl.ColorType.BGR orig_img_t.channels_ = "xyc" tmp, labels = ecvl.Image.empty(), ecvl.Image.empty() ecvl.CopyImage(img_t, tmp, ecvl.DataType.uint8) ecvl.ConnectedComponentsLabeling(tmp, labels) ecvl.CopyImage(labels, tmp, ecvl.DataType.uint8) contours = ecvl.FindContours(tmp) ecvl.CopyImage(orig_img_t, tmp, ecvl.DataType.uint8) tmp_np = np.array(tmp, copy=False) for cseq in contours: for c in cseq: tmp_np[c[0], c[1], 0] = 0 tmp_np[c[0], c[1], 1] = 0 tmp_np[c[0], c[1], 2] = 255 filename = d.samples_[d.GetSplit()[n]].location_[0] head, tail = os.path.splitext(os.path.basename(filename)) bname = "%s.png" % head output_fn = os.path.join(args.out_dir, bname) ecvl.ImWrite(output_fn, tmp) gt_t = ecvl.TensorToView(gt) gt_t.colortype_ = ecvl.ColorType.GRAY gt_t.channels_ = "xyc" gt.mult_(255.) gt_filename = d.samples_[d.GetSplit()[n]].label_path_ gt_fn = os.path.join(args.out_dir, os.path.basename(gt_filename)) ecvl.ImWrite(gt_fn, gt_t) n += 1 print() print("MIoU: %.6g" % evaluator.MeanMetric())
def main(args): num_classes = 1 size = [512, 512] # size of images thresh = 0.5 best_dice = -1 if args.out_dir: os.makedirs(args.out_dir, exist_ok=True) in_ = eddl.Input([1, size[0], size[1]]) out = SegNetBN(in_, num_classes) out_sigm = eddl.Sigmoid(out) net = eddl.Model([in_], [out_sigm]) eddl.build(net, eddl.adam(0.0001), ["cross_entropy"], ["mean_squared_error"], eddl.CS_GPU([1], mem='low_mem') if args.gpu else eddl.CS_CPU()) eddl.summary(net) eddl.setlogfile(net, "pneumothorax_segmentation_training") if args.ckpts and os.path.exists(args.ckpts): print("Loading checkpoints '{}'".format(args.ckpts)) eddl.load(net, args.ckpts, 'bin') training_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ecvl.AugMirror(0.5), ecvl.AugRotate([-10, 10]), ecvl.AugBrightness([0, 30]), ecvl.AugGammaContrast([0, 3]), ]) validation_augs = ecvl.SequentialAugmentationContainer( [ecvl.AugResizeDim(size)]) dataset_augs = ecvl.DatasetAugmentations( [training_augs, validation_augs, None]) print("Reading dataset") d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs, ecvl.ColorType.GRAY) # Prepare tensors which store batch x = Tensor([args.batch_size, d.n_channels_, size[0], size[1]]) y = Tensor([args.batch_size, d.n_channels_gt_, size[0], size[1]]) # Retrieve indices of images with a black ground truth # which are not include in a split train_split = d.GetSplit(ecvl.SplitType.training) val_split = d.GetSplit(ecvl.SplitType.validation) test_split = d.GetSplit(ecvl.SplitType.test) all_split = set(train_split + val_split + test_split) images_list = set(range(len(d.samples_))) # Obtain images with black ground truth black_images = images_list - all_split # Add a 25% of training samples with black ground truth. num_samples_train = math.floor(len(train_split) * 1.25) num_batches_train = num_samples_train // args.batch_size # Add a 25% of validation samples with black ground truth. num_samples_validation = math.floor(len(val_split) * 1.25) num_batches_validation = num_samples_validation // args.batch_size black_images = list(black_images) black_training = black_images[0:-(num_samples_validation - len(val_split))] black_validation = black_images[-(num_samples_validation - len(val_split)):] indices = list(range(args.batch_size)) evaluator = utils.Evaluator() print("Starting training") for e in range(args.epochs): print("Epoch {:d}/{:d} - Training".format(e + 1, args.epochs), flush=True) d.SetSplit(ecvl.SplitType.training) eddl.reset_loss(net) s = d.GetSplit() random.shuffle(s) d.split_.training_ = s random.shuffle(black_training) d.ResetAllBatches() # Indices to track mask and black vector in PneumothoraxLoadBatch m_i = 0 b_i = 0 for i, b in enumerate(range(num_batches_train)): d, images, labels, _, m_i, b_i = PneumothoraxLoadBatch( d, black_training, m_i, b_i) x, y = fill_tensors(images, labels, x, y) x.div_(255.0) y.div_(255.0) eddl.train_batch(net, [x], [y], indices) if i % args.log_interval == 0: print("Epoch {:d}/{:d} (batch {:d}/{:d}) - ".format( e + 1, args.epochs, b + 1, num_batches_train), end="", flush=True) eddl.print_loss(net, b) print() d.SetSplit(ecvl.SplitType.validation) evaluator.ResetEval() print("Epoch %d/%d - Evaluation" % (e + 1, args.epochs), flush=True) m_i = 0 b_i = 0 for b in range(num_batches_validation): n = 0 print("Epoch {:d}/{:d} (batch {:d}/{:d}) ".format( e + 1, args.epochs, b + 1, num_batches_validation), end="", flush=True) d, images, labels, names, m_i, b_i = PneumothoraxLoadBatch( d, black_validation, m_i, b_i) x, y = fill_tensors(images, labels, x, y) x.div_(255.0) y.div_(255.0) eddl.forward(net, [x]) output = eddl.getOutput(out_sigm) # Compute Dice metric and optionally save the output images for k in range(args.batch_size): pred = output.select([str(k)]) gt = y.select([str(k)]) pred_np = np.array(pred, copy=False) gt_np = np.array(gt, copy=False) # DiceCoefficient modifies image as a side effect dice = evaluator.DiceCoefficient(pred_np, gt_np, thresh=thresh) print("- Dice: {:.6f} ".format(dice), end="", flush=True) if args.out_dir: # Save original image fused together with prediction and # ground truth pred_np *= 255 pred_ecvl = ecvl.TensorToImage(pred) pred_ecvl.colortype_ = ecvl.ColorType.GRAY pred_ecvl.channels_ = "xyc" ecvl.ResizeDim(pred_ecvl, pred_ecvl, (1024, 1024), ecvl.InterpolationType.nearest) filename_gt = names[n + 1] gt_ecvl = ecvl.ImRead(filename_gt, ecvl.ImReadMode.GRAYSCALE) filename = names[n] # Image as BGR img_ecvl = ecvl.ImRead(filename) ecvl.Stack([img_ecvl, img_ecvl, img_ecvl], img_ecvl) img_ecvl.channels_ = "xyc" img_ecvl.colortype_ = ecvl.ColorType.BGR image_np = np.array(img_ecvl, copy=False) pred_np = np.array(pred_ecvl, copy=False) gt_np = np.array(gt_ecvl, copy=False) pred_np = pred_np.squeeze() gt_np = gt_np.squeeze() # Prediction summed in R channel image_np[:, :, -1] = np.where(pred_np == 255, pred_np, image_np[:, :, -1]) # Ground truth summed in G channel image_np[:, :, 1] = np.where(gt_np == 255, gt_np, image_np[:, :, 1]) n += 2 head, tail = os.path.splitext(os.path.basename(filename)) bname = "{}.png".format(head) filepath = os.path.join(args.out_dir, bname) ecvl.ImWrite(filepath, img_ecvl) print() mean_dice = evaluator.MeanMetric() if mean_dice > best_dice: print("Saving weights") eddl.save( net, "pneumothorax_segnetBN_adam_lr_0.0001_" "loss_ce_size_512_{}.bin".format(e + 1), "bin") best_dice = mean_dice print("Mean Dice Coefficient: {:.6g}".format(mean_dice))
def main(): # SET THE PARAMETERS parser = argparse.ArgumentParser() parser.add_argument('--lr', type=float, default=1e-3, help='Initial learning rate (default: 1e-3)') parser.add_argument('--epochs', type=int, default=100, help='Maximum number of epochs (default: 100)') parser.add_argument('--patience', type=int, default=10, help='lr scheduler patience (default: 10)') parser.add_argument('--batch', type=int, default=4, help='Batch size (default: 4)') parser.add_argument('--name', type=str, default='Prueba', help='Name of the current test (default: Prueba)') parser.add_argument('--load_model', type=str, default='best_acc', help='Weights to load (default: best_acc)') parser.add_argument('--test', action='store_false', default=True, help='Only test the model') parser.add_argument('--resume', action='store_true', default=False, help='Continue training a model') parser.add_argument('--load_path', type=str, default=None, help='Name of the folder with the pretrained model') parser.add_argument('--ft', action='store_true', default=False, help='Fine-tune a model') parser.add_argument('--psFactor', type=float, default=1, help='Fine-tune a model') parser.add_argument('--gpu', type=str, default='0', help='GPU(s) to use (default: 0)') args = parser.parse_args() training = args.test os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu if args.ft: args.resume = True args.patch_size = [int(128*args.psFactor), int(128*args.psFactor), int(96*args.psFactor)] args.num_classes = 2 # PATHS AND DIRS save_path = os.path.join('TRAIN', args.name) out_path = os.path.join(save_path, 'Val') load_path = save_path if args.load_path is not None: load_path = os.path.join('TRAIN/', args.load_path) root = '../../Data/Heart' train_file = 'train_paths.csv' test_file = 'val_paths.csv' if not os.path.exists(save_path): os.makedirs(save_path) os.makedirs(out_path) # SEEDS np.random.seed(12345) torch.manual_seed(12345) cudnn.deterministic = False cudnn.benchmark = True # CREATE THE NETWORK ARCHITECTURE model = GNet(num_classes=args.num_classes, backbone='xception') print('---> Number of params: {}'.format( sum([p.data.nelement() for p in model.parameters()]))) model = model.cuda() optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-5, amsgrad=True) model, optimizer = amp.initialize(model, optimizer, opt_level="O1") annealing = optim.lr_scheduler.ReduceLROnPlateau( optimizer, verbose=True, patience=args.patience, threshold=0.001, factor=0.5, threshold_mode="abs") criterion = utils.segmentation_loss(alpha=1) metrics = utils.Evaluator(args.num_classes) # LOAD A MODEL IF NEEDED (TESTING OR CONTINUE TRAINING) args.epoch = 0 best_acc = 0 if args.resume or not training: name = 'epoch_' + args.load_model + '.pth.tar' checkpoint = torch.load( os.path.join(load_path, name), map_location=lambda storage, loc: storage) args.epoch = checkpoint['epoch'] best_acc = checkpoint['best_acc'] args.lr = checkpoint['lr'] print('Loading model and optimizer {}.'.format(args.epoch)) amp.load_state_dict(checkpoint['amp']) model.load_state_dict(checkpoint['state_dict'], strict=(not args.ft)) if not args.ft: optimizer.load_state_dict(checkpoint['optimizer']) # DATALOADERS train_loader = Read_data.MRIdataset(True, train_file, root, args.patch_size) val_loader = Read_data.MRIdataset(True, test_file, root, args.patch_size, val=True) test_loader = Read_data.MRIdataset(False, test_file, root, args.patch_size) train_loader = DataLoader(train_loader, shuffle=True, sampler=None, batch_size=args.batch, num_workers=10) val_loader = DataLoader(val_loader, shuffle=False, sampler=None, batch_size=args.batch * 2, num_workers=10) test_loader = DataLoader(test_loader, shuffle=False, sampler=None, batch_size=1, num_workers=0) # TRAIN THE MODEL is_best = True if training: torch.cuda.empty_cache() out_file = open(os.path.join(save_path, 'progress.csv'), 'a+') for epoch in range(args.epoch + 1, args.epochs + 1): args.epoch = epoch lr = utils.get_lr(optimizer) print('--------- Starting Epoch {} --> {} ---------'.format( epoch, time.strftime("%H:%M:%S"))) print('Learning rate:', lr) train_loss = train(args, model, train_loader, optimizer, criterion) val_loss, acc = val(args, model, val_loader, criterion, metrics) acc = acc.item() out_file.write('{},{},{},{}\n'.format( args.epoch, train_loss, val_loss, acc)) out_file.flush() annealing.step(val_loss) save_graph(save_path) is_best = best_acc < acc best_acc = max(best_acc, acc) state = { 'epoch': epoch, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'amp': amp.state_dict(), 'loss': [train_loss, val_loss], 'lr': lr, 'acc': acc, 'best_acc': best_acc} checkpoint = epoch % 20 == 0 utils.save_epoch(state, save_path, epoch, checkpoint=checkpoint, is_best=is_best) if lr <= (args.lr / (10 ** 3)): print('Stopping training: learning rate is too small') break out_file.close() # TEST THE MODEL if not is_best: checkpoint = torch.load( os.path.join(save_path, 'epoch_best_acc.pth.tar'), map_location=lambda storage, loc: storage) model.load_state_dict(checkpoint['state_dict']) args.epoch = checkpoint['epoch'] print('Testing epoch with best dice ({}: acc {})'.format( args.epoch, checkpoint['acc'])) test(args, model, test_loader, out_path, test_file)
def evaluate(expression: str, at: Union[float, List[float]]) -> List[float]: evaluator = utils.Evaluator(expression, at) return evaluator.results
def main(args): num_classes = 1 size = [512, 512] # size of images thresh = 0.5 if args.out_dir: os.makedirs(args.out_dir, exist_ok=True) in_ = eddl.Input([1, size[0], size[1]]) out = SegNetBN(in_, num_classes) out_sigm = eddl.Sigmoid(out) net = eddl.Model([in_], [out_sigm]) eddl.build( net, eddl.adam(0.0001), ["cross_entropy"], ["mean_squared_error"], eddl.CS_GPU([1]) if args.gpu else eddl.CS_CPU() ) eddl.summary(net) eddl.setlogfile(net, "pneumothorax_segmentation_inference") if not os.path.exists(args.ckpts): raise RuntimeError('Checkpoint "{}" not found'.format(args.ckpts)) eddl.load(net, args.ckpts, "bin") training_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ]) test_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ]) dataset_augs = ecvl.DatasetAugmentations([training_augs, None, test_augs]) print("Reading dataset") d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs, ecvl.ColorType.GRAY) x = Tensor([args.batch_size, d.n_channels_, size[0], size[1]]) print("Testing") d.SetSplit(ecvl.SplitType.test) num_samples_test = len(d.GetSplit()) num_batches_test = num_samples_test // args.batch_size evaluator = utils.Evaluator() evaluator.ResetEval() for b in range(num_batches_test): n = 0 print("Batch {:d}/{:d} ".format( b + 1, num_batches_test), end="", flush=True) d.LoadBatch(x) x.div_(255.0) eddl.forward(net, [x]) if args.out_dir: output = eddl.getOutput(out_sigm) for k in range(args.batch_size): img = output.select([str(k)]) img_I = ecvl.TensorToImage(img) img_I.colortype_ = ecvl.ColorType.GRAY img_I.channels_ = "xyc" ecvl.Threshold(img_I, img_I, thresh, 255) filename = d.samples_[d.GetSplit()[n]].location_[0] head, tail = os.path.splitext(os.path.basename(filename)) bname = "{}.png".format(head) output_fn = os.path.join(args.out_dir, bname) ecvl.ImWrite(output_fn, img_I) n += 1 print()
tempfile.mkstemp('.png', 'segmentation_') for scale in propagationScalings ] (segmentationListFD, segmentationListFilename) = tempfile.mkstemp('.txt', 'segmentationList_', text=True) segmentationListFile = open(segmentationListFilename, 'w') for (fd, filename) in segmentationTemporaryFiles: segmentationListFile.write(filename + '\n') segmentationListFile.close() testFilenames = open(testListFilename, 'r').read().splitlines() areaEvaluator = utils.Evaluator(len(segmentationTemporaryFiles)) boundaryEvaluator = utils.Evaluator(len(segmentationTemporaryFiles)) for imageFilename in testFilenames: print imageFilename match = re.search('_(0*([1-9][0-9]*))\.', imageFilename) if (match == None): match = re.search('_(0000(0))\.', imageFilename) assert match != None, 'Cannot parse an image index' fullImageIndex = match.group(1) imageIndex = match.group(2) groundTruthFilename = imageFilename.replace( '/image_', '/' + groundTruthPrefix + '_')