def get_cropped_test_img(fname,
                         bbox_pred,
                         pad=None,
                         as_grey=False,
                         return_bbox=False):
    img = imread(fname, as_grey=as_grey)
    h = img.shape[0]
    w = img.shape[1]
    bbox_pred = bbox_pred * [w, h, w, h]
    bbox_pred = np.round(bbox_pred).astype(int)
    l = min(max(bbox_pred[0], 0), w)
    t = min(max(bbox_pred[1], 0), h)
    r = min(max(l + bbox_pred[2], 0), w)
    b = min(max(t + bbox_pred[3], 0), h)

    if pad is not None:
        l, t, r, b = add_padding_to_bbox(l,
                                         t, (r - l), (b - t),
                                         pad / 100.0,
                                         img.shape[1],
                                         img.shape[0],
                                         format='ltrb')
    cropped_img = img[t:b, l:r]

    if return_bbox:
        return cropped_img, bbox_pred
    else:
        return cropped_img
def get_cropped_test_img(fname, bbox_pred, pad=None, as_grey=False, return_bbox=False):
    img = imread(fname, as_grey=as_grey)
    h = img.shape[0]
    w = img.shape[1]
    bbox_pred = bbox_pred * [w, h, w, h]
    bbox_pred = np.round(bbox_pred).astype(int)
    l = min(max(bbox_pred[0], 0), w)
    t = min(max(bbox_pred[1], 0), h)
    r = min(max(l + bbox_pred[2], 0), w)
    b = min(max(t + bbox_pred[3], 0), h)

    if pad is not None:
        l, t, r, b = add_padding_to_bbox(
            l, t, (r - l), (b - t), pad / 100.0,
            img.shape[1], img.shape[0],
            format='ltrb'
        )
    cropped_img = img[t:b, l:r]

    if return_bbox:
        return cropped_img, bbox_pred
    else:
        return cropped_img
Esempio n. 3
0
    X_fp = np.memmap(X_fname, dtype=np.float32, mode='w+', shape=X_shape)
    y_fp = np.memmap(y_fname, dtype=np.int32, mode='w+', shape=y_shape)

    for i, row in tqdm(df.iterrows(), total=len(df)):
        fname = os.path.join('data/imgs/', row['Image'])
        whale_id = row['whaleID']
        x = int(row['x'])
        y = int(row['y'])
        w = int(row['width'])
        h = int(row['height'])

        try:
            img = imread(fname, as_grey=args.as_grey)
            if args.pad > 0:
                x, y, w, h = add_padding_to_bbox(x, y, w, h, args.pad / 100.0,
                                                 img.shape[1], img.shape[0])
            img = img[y:y + h, x:x + w]
            img = resize(img, (args.size, args.size))

            if args.as_grey:
                img = img.reshape(-1, args.size, args.size)
            else:
                img = img.transpose(2, 0, 1)

            img = img.astype(np.float32)

            X_fp[i] = img
            y_fp[i] = whale_id

            X_fp.flush()
            y_fp.flush()
    X_fp = np.memmap(X_fname, dtype=np.float32, mode='w+', shape=X_shape)
    y_fp = np.memmap(y_fname, dtype=np.int32, mode='w+', shape=y_shape)

    for i, row in tqdm(df.iterrows(), total=len(df)):
        fname = os.path.join('data/imgs/', row['Image'])
        whale_id = row['whaleID']
        x = int(row['x'])
        y = int(row['y'])
        w = int(row['width'])
        h = int(row['height'])

        try:
            img = imread(fname, as_grey=args.as_grey)
            if args.pad > 0:
                x, y, w, h = add_padding_to_bbox(
                    x, y, w, h, args.pad / 100.0,
                    img.shape[1], img.shape[0]
                )
            img = img[y:y + h, x:x + w]
            img = resize(img, (args.size, args.size))

            if args.as_grey:
                img = img.reshape(-1, args.size, args.size)
            else:
                img = img.transpose(2, 0, 1)

            img = img.astype(np.float32)

            X_fp[i] = img
            y_fp[i] = whale_id

            X_fp.flush()