Esempio n. 1
0
    def _validate(self, model, dataset):
        validation_dataset = dataset

        criterion = nn.MSELoss()

        losses = []
        total_targets, total_predictions = [], []
        for images in tqdm(validation_dataset, desc="validating", ncols=150):
            images = images.cuda()
            predictions = model.eval()(images, train_=False)

            loss = criterion(images, predictions)
            losses.append(loss.item())

            for i in range(predictions.size()[0]):
                total_targets.append(images[i].cpu().detach().numpy().reshape(
                    32, 32, 3))
                total_predictions.append(
                    predictions[i].cpu().detach().numpy().reshape(32, 32, 3))

        # calculate ssim
        ssim = calculate_ssim(total_targets, total_predictions)

        # calculate loss
        loss = np.mean(losses)
        return loss, ssim
Esempio n. 2
0
def calculate_psnr_ssim_ESRGAN():
    dir = "/home/jakaria/Super_Resolution/Filter_Enhance_Detect/saved_ESRGAN/val_images/*/*"
    HR_DIR = "/home/jakaria/Super_Resolution/Datasets/COWC/DetectionPatches_256x256/Potsdam_ISPRS/HR/x4/valid_img/"
    img_SR = sorted(glob.glob(dir + '_300000.png'))

    psnr_SR = 0
    ssim_SR = 0

    total = len(img_SR)
    print(total)

    i = 0

    for im_SR in img_SR:
        print(os.path.basename(im_SR) + '--')
        im_gt = os.path.basename(im_SR)
        im_gt = im_gt.rsplit('_', 1)[0] + ".jpg"
        im_gt = os.path.join(HR_DIR, im_gt)
        print(im_gt)

        image_SR = cv2.imread(im_SR)
        image_SR = cv2.cvtColor(image_SR, cv2.COLOR_BGR2RGB)
        cv2.imwrite(im_SR, image_SR)

        image_gt = cv2.imread(im_gt)
        image_SR = cv2.imread(im_SR)

        psnr_SR += calculate_psnr(image_gt, image_SR)
        ssim_SR += calculate_ssim(image_gt, image_SR)

        i += 1
        print(i)

    avg_psnr_SR = psnr_SR / total
    avg_ssim_SR = ssim_SR / total

    text_file = open(
        "/home/jakaria/Super_Resolution/Filter_Enhance_Detect/saved_ESRGAN/Output.txt",
        "a")
    print("SR PSNR: %4.2f" % avg_psnr_SR)
    text_file.write("SR PSNR: %4.2f \n" % avg_psnr_SR)
    print("SR SSIM: %5.4f" % avg_ssim_SR)
    text_file.write("SR SSIM: %5.4f \n" % avg_ssim_SR)
Esempio n. 3
0
    def train(self, continue_: bool = False):
        model = Model().cuda()
        if continue_:
            model.load_state_dict(torch.load(self.model_path))

        criterion = nn.MSELoss()
        optimizer = torch.optim.Adam(model.parameters(), lr=self.lr)

        train_loss, train_ssim, val_loss, val_ssim = [], [], [], []
        for epoch in range(1, (self.epochs + 1)):

            epoch_loss = []
            epoch_train_targets, epoch_train_predictions = [], []
            for images in tqdm(self.train_set, desc="epoch", ncols=150):
                optimizer.zero_grad()

                images = images.float().cuda()
                predictions = model.train()(images, train_=True)

                loss = criterion(predictions, images)
                loss.backward()
                optimizer.step()

                epoch_loss.append(loss.item())

                for i in range(predictions.size()[0]):
                    epoch_train_targets.append(
                        images[i].cpu().detach().numpy())                     \
                                        epoch_train_predictions.append(predictions[i].cpu().detach().numpy())

            current_val_loss, current_val_ssim = self._validate(
                model, self.validation_set)
            current_train_loss = np.mean(epoch_loss)
            current_train_ssim = calculate_ssim(epoch_train_targets,
                                                epoch_train_predictions)

            show_progress(self.epochs, epoch, current_train_loss,
                          current_train_ssim, current_val_loss,
                          current_val_ssim)

            torch.save(model.state_dict(), self.model_path)
Esempio n. 4
0
def evaluate(model, update_step, writer, bucket, engine):
    device = torch.device('cuda:0')
    model.eval()
    eval_paths = [os.path.join(args.eval_path, v) for v in ['Set14', 'Set5']]
    metrics_list = []

    unnorm = UnNormalize(0.5, 0.5)
    for eval_path in eval_paths:
        eval_name = os.path.basename(eval_path)
        HQ_path = os.path.join(eval_path, eval_name) + '.lmdb'
        LQ_path = os.path.join(eval_path, eval_name) + '_LQ.lmdb'
        LQ_r_path = os.path.join(eval_path, eval_name) + '_LQ_restored.lmdb'

        eval_set = ValDataset(HQ_path, LQ_path, LQ_r_path, args.scale)
        eval_loader = DataLoader(
            eval_set, batch_size=1, shuffle=False, num_workers=4)

        psrn_rgb = 0.0
        psrn_y = 0.0
        ssim_rgb = 0.0
        ssim_y = 0.0

        for i, data_dict in enumerate(eval_loader):
            img_HQ = data_dict['img_GT']
            img_LQ = data_dict['img_LQ'].to(device)
            img_LQ_r = data_dict['img_LQ_r']

            with torch.no_grad():
                # SR image range [-1, 1]
                img_SR = model(img_LQ)
                # SR image range [0, 1]
                img_SR = unnorm(img_SR)
            if i == 0:
                imgs = torch.cat([img_HQ, img_SR.detach().cpu(), img_LQ_r], dim=0)
                grid = vutils.make_grid(imgs, nrow=3, normalize=False)
                tmp_image = T.ToPILImage()(grid)
                tmp_image.save('images/tmp_image.png')
                upload_to_cloud(bucket, 'images/tmp_image.png',
                                'odesr01_04/image_progress/{}/gen_step_{}'.
                                format(eval_name, update_step * args.update_freq))
                if eval_name == 'Set5':
                    writer.add_image('Set5', grid, update_step)

            crop_size = args.scale
            img_HQ_rgb = img_HQ[0].permute(2, 1, 0).cpu(). \
                numpy()[crop_size:-crop_size, crop_size:-crop_size, :]
            img_SR_rgb = img_SR[0].permute(2, 1, 0).detach().cpu(). \
                numpy()[crop_size:-crop_size, crop_size:-crop_size, :]
            img_HQ_y = rgb2ycbcr(img_HQ_rgb)
            img_SR_y = rgb2ycbcr(img_SR_rgb)

            psrn_rgb += calculate_psnr(img_HQ_rgb * 255, img_SR_rgb * 255)
            psrn_y += calculate_psnr(img_HQ_y * 255, img_SR_y * 255)
            ssim_rgb += calculate_ssim(img_HQ_rgb * 255, img_SR_rgb * 255)
            ssim_y += calculate_ssim(img_HQ_y * 255, img_SR_y * 255)

        psrn_rgb = psrn_rgb / len(eval_loader.dataset)
        psrn_y = psrn_y / len(eval_loader.dataset)
        ssim_rgb = ssim_rgb / len(eval_loader.dataset)
        ssim_y = ssim_y / len(eval_loader.dataset)

        metrics_list.extend([psrn_rgb, psrn_y, ssim_rgb, ssim_y])

        if eval_name == 'Set5':
            writer.add_scalar('psrn_rgb', psrn_rgb, update_step)
            writer.add_scalar('psrn_y', psrn_y, update_step)
            writer.add_scalar('ssim_rgb', ssim_rgb, update_step)
            writer.add_scalar('ssim_y', ssim_y, update_step)

    query = '''
        INSERT INTO odesr01_04_val
            (set14_psnr_rgb, set14_psnr_y, set14_ssim_rgb, set14_ssim_y,
            set5_psnr_rgb, set5_psnr_y, set5_ssim_rgb, set5_ssim_y)
        VALUES (%f, %f, %f, %f, %f, %f, %f, %f)
    ''' % tuple(metrics_list)
    engine.execute(query)
    model.train()
def admm_denoise(y,
                 Phi,
                 A,
                 At,
                 _lambda=1,
                 gamma=0.01,
                 denoiser='tv',
                 iter_max=50,
                 noise_estimate=True,
                 sigma=None,
                 tv_weight=0.1,
                 tv_iter_max=5,
                 multichannel=True,
                 x0=None,
                 X_orig=None,
                 show_iqa=True):
    '''
    Alternating direction method of multipliers (ADMM)[1]-based denoising 
    regularization for snapshot compressive imaging (SCI).

    Parameters
    ----------
    y : two-dimensional (2D) ndarray of ints, uints or floats
        Input single measurement of the snapshot compressive imager (SCI).
    Phi : three-dimensional (3D) ndarray of ints, uints or floats, omitted
        Input sensing matrix of SCI with the third dimension as the 
        time-variant, spectral-variant, volume-variant, or angular-variant 
        masks, where each mask has the same pixel resolution as the snapshot
        measurement.
    Phi_sum : 2D ndarray
        Sum of the sensing matrix `Phi` along the third dimension.
    A : function
        Forward model of SCI, where multiple encoded frames are collapsed into
        a single measurement.
    At : function
        Transpose of the forward model.
    proj_meth : {'admm' or 'gap'}, optional
        Projection method of the data term. Alternating direction method of 
        multipliers (ADMM)[1] and generalizedv alternating projection (GAP)[2]
        are used, where ADMM for noisy data, especially real data and GAP for 
        noise-free data.
    gamma : float, optional
        Parameter in the ADMM projection, where more noisy measurements require
        greater gamma.
    denoiser : string, optional
        Denoiser used as the regularization imposing on the prior term of the 
        reconstruction.
    _lambda : float, optional
        Regularization factor balancing the data term and the prior term, 
        where larger `_lambda` imposing more constrains on the prior term. 
    iter_max : int or uint, optional 
        Maximum number of iterations.
    accelerate : boolean, optional
        Enable acceleration in GAP.
    noise_estimate : boolean, optional
        Enable noise estimation in the denoiser.
    sigma : one-dimensional (1D) ndarray of ints, uints or floats
        Input noise standard deviation for the denoiser if and only if noise 
        estimation is disabled(i.e., noise_estimate==False). The scale of sigma 
        is [0, 255] regardless of the the scale of the input measurement and 
        masks.
    tv_weight : float, optional
        weight in total variation (TV) denoising.
    x0 : 3D ndarray 
        Start point (initialized value) for the iteration process of the 
        reconstruction.

    Returns
    -------
    x : 3D ndarray
        Reconstructed 3D scene captured by the SCI system.

    References
    ----------
    .. [1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, 
           "Distributed Optimization and Statistical Learning via the 
           Alternating Direction Method of Multipliers," Foundations and 
           Trends® in Machine Learning, vol. 3, no. 1, pp. 1-122, 2011.
    .. [2] X. Yuan, "Generalized alternating projection based total variation 
           minimization for compressive sensing," in IEEE International 
           Conference on Image Processing (ICIP), 2016, pp. 2539-2543.
    .. [3] Y. Liu, X. Yuan, J. Suo, D. Brady, and Q. Dai, "Rank Minimization 
           for Snapshot Compressive Imaging," IEEE Transactions on Pattern 
           Analysis and Machine Intelligence, doi:10.1109/TPAMI.2018.2873587, 
           2018.

    Code credit
    -----------
    Xin Yuan, Bell Labs, [email protected], created Aug 7, 2018.
    Yang Liu, Tsinghua University, [email protected], 
      updated Jan 22, 2019.

    See Also
    --------
    gap_denoise
    '''
    # [0] initialization
    if x0 is None:
        x0 = At(y, Phi)  # default start point (initialized value)
    if not isinstance(sigma, list):
        sigma = [sigma]
    if not isinstance(iter_max, list):
        iter_max = [iter_max] * len(sigma)
    # [1] start iteration for reconstruction
    x = x0  # initialization
    theta = x0
    Phi_sum = np.sum(Phi, 2)
    Phi_sum[Phi_sum == 0] = 1
    b = np.zeros_like(x0)
    psnr_all = []
    ssim_all = []
    k = 0
    device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
    model = net()
    model.load_state_dict(
        torch.load(
            r'/home/dgl/zhengsiming/self_train/check_points/best_smallsigma.pth'
        ))
    model.eval()
    for q, v in model.named_parameters():
        v.requires_grad = False
    model = model.to(device)
    for idx, nsig in enumerate(sigma):  # iterate all noise levels
        for it in range(iter_max[idx]):
            # Euclidean projection
            yb = A(theta + b, Phi)
            x = (theta + b) + _lambda * (At(
                (y - yb) / (Phi_sum + gamma), Phi))  # ADMM
            x1 = shift_back(x - b, step=2)
            #x1=x-b
            # switch denoiser
            if denoiser.lower() == 'tv':  # total variation (TV) denoising
                #theta = denoise_tv_chambolle(x1, nsig/255, n_iter_max=tv_iter_max, multichannel=multichannel)
                theta = TV_denoiser(x1, tv_weight, n_iter_max=tv_iter_max)
            elif denoiser.lower() == 'wavelet':  # wavelet denoising
                if noise_estimate or nsig is None:  # noise estimation enabled
                    theta = denoise_wavelet(x1, multichannel=multichannel)
                else:
                    theta = denoise_wavelet(x1,
                                            sigma=nsig,
                                            multichannel=multichannel)
            elif denoiser.lower() == 'vnlnet':  # Video Non-local net denoising
                theta = vnlnet(np.expand_dims((x1).transpose(2, 0, 1), 3),
                               nsig)
                theta = np.transpose(theta.squeeze(3), (1, 2, 0))
            elif denoiser.lower() == 'hsicnn':
                if k >= 89:
                    tem = None
                    for i in range(28):
                        net_input = None
                        if i < 3:
                            if i == 0:
                                net_input = np.dstack(
                                    (x1[:, :, i], x1[:, :,
                                                     i], x1[:, :,
                                                            i], x1[:, :,
                                                                   i:i + 4]))
                            elif i == 1:
                                net_input = np.dstack(
                                    (x1[:, :, i - 1], x1[:, :, i - 1],
                                     x1[:, :, i - 1], x1[:, :, i:i + 4]))
                            elif i == 2:
                                net_input = np.dstack(
                                    (x1[:, :, i - 2], x1[:, :, i - 2],
                                     x1[:, :, i - 1], x1[:, :, i:i + 4]))
                            net_input = torch.from_numpy(
                                np.ascontiguousarray(net_input)).permute(
                                    2, 0, 1).float().unsqueeze(0)
                            net_input = net_input.to(device)
                            Nsigma = torch.full((1, 1, 1, 1),
                                                10 / 255.).type_as(net_input)
                            output = model(net_input, Nsigma)
                            output = output.data.squeeze().float().cpu().numpy(
                            )
                            if i == 0:
                                tem = output
                            else:
                                tem = np.dstack((tem, output))
                        elif i > 24:
                            if i == 25:
                                net_input = np.dstack(
                                    (x1[:, :, i - 3:i + 1], x1[:, :, i + 1],
                                     x1[:, :, i + 2], x1[:, :, i + 2]))
                            elif i == 26:
                                net_input = np.dstack(
                                    (x1[:, :, i - 3:i + 1], x1[:, :, i + 1],
                                     x1[:, :, i + 1], x1[:, :, i + 1]))
                            elif i == 27:
                                net_input = np.dstack(
                                    (x1[:, :, i - 3:i + 1], x1[:, :, i],
                                     x1[:, :, i], x1[:, :, i]))
                            net_input = torch.from_numpy(
                                np.ascontiguousarray(net_input)).permute(
                                    2, 0, 1).float().unsqueeze(0)
                            net_input = net_input.to(device)
                            Nsigma = torch.full((1, 1, 1, 1),
                                                10 / 255.).type_as(net_input)
                            output = model(net_input, Nsigma)
                            output = output.data.squeeze().float().cpu().numpy(
                            )
                            tem = np.dstack((tem, output))
                        else:
                            net_input = x1[:, :, i - 3:i + 4]
                            net_input = torch.from_numpy(
                                np.ascontiguousarray(net_input)).permute(
                                    2, 0, 1).float().unsqueeze(0)
                            net_input = net_input.to(device)
                            Nsigma = torch.full((1, 1, 1, 1),
                                                10 / 255.).type_as(net_input)
                            output = model(net_input, Nsigma)
                            output = output.data.squeeze().float().cpu().numpy(
                            )
                            tem = np.dstack((tem, output))
                    theta = tem
                else:
                    #print('theta:', np.max(theta))
                    theta = denoise_tv_chambolle(x1,
                                                 tv_weight,
                                                 n_iter_max=tv_iter_max,
                                                 multichannel=multichannel)
            else:
                raise ValueError('Unsupported denoiser {}!'.format(denoiser))

            # [optional] calculate image quality assessment, i.e., PSNR for
            # every five iterations
            if show_iqa and X_orig is not None:
                psnr_all.append(psnr(X_orig, theta))
                ssim_all.append(calculate_ssim(X_orig, theta))
                if (k + 1) % 1 == 0:
                    if not noise_estimate and nsig is not None:
                        if nsig < 1:
                            print(
                                '  ADMM-{0} iteration {1: 3d}, sigma {2: 3g}/255, '
                                'PSNR {3:2.2f} dB.'.format(
                                    denoiser.upper(), k + 1, nsig * 255,
                                    psnr_all[k]),
                                'SSIM:{}'.format(ssim_all[k]))
                        else:
                            print(
                                '  ADMM-{0} iteration {1: 3d}, sigma {2: 3g}, '
                                'PSNR {3:2.2f} dB.'.format(
                                    denoiser.upper(), k + 1, nsig,
                                    psnr_all[k]),
                                'SSIM:{}'.format(ssim_all[k]))
                    else:
                        print(
                            '  ADMM-{0} iteration {1: 3d}, '
                            'PSNR {2: 2.2f} dB.'.format(
                                denoiser.upper(), k + 1, psnr_all[k]),
                            'SSIM:{}'.format(ssim_all[k]))
            theta = shift(theta, step=2)
            b = b - (x - theta)  # update residual
            k = k + 1
    return theta, psnr_all, ssim_all
def gap_denoise(y,
                Phi,
                A,
                At,
                _lambda=1,
                accelerate=True,
                denoiser='tv',
                iter_max=50,
                noise_estimate=True,
                sigma=None,
                tv_weight=0.1,
                tv_iter_max=5,
                multichannel=True,
                x0=None,
                X_orig=None,
                model=None,
                show_iqa=True):
    '''
    Alternating direction method of multipliers (ADMM)[1]-based denoising 
    regularization for snapshot compressive imaging (SCI).

    Parameters
    ----------
    y : two-dimensional (2D) ndarray of ints, uints or floats
        Input single measurement of the snapshot compressive imager (SCI).
    Phi : three-dimensional (3D) ndarray of ints, uints or floats, omitted
        Input sensing matrix of SCI with the third dimension as the 
        time-variant, spectral-variant, volume-variant, or angular-variant 
        masks, where each mask has the same pixel resolution as the snapshot
        measurement.
    Phi_sum : 2D ndarray,
        Sum of the sensing matrix `Phi` along the third dimension.
    A : function
        Forward model of SCI, where multiple encoded frames are collapsed into
        a single measurement.
    At : function
        Transpose of the forward model.
    proj_meth : {'admm' or 'gap'}, optional
        Projection method of the data term. Alternating direction method of 
        multipliers (ADMM)[1] and generalizedv alternating projection (GAP)[2]
        are used, where ADMM for noisy data, especially real data and GAP for 
        noise-free data.
    gamma : float, optional
        Parameter in the ADMM projection, where more noisy measurements require
        greater gamma.
    denoiser : string, optional
        Denoiser used as the regularization imposing on the prior term of the 
        reconstruction.
    _lambda : float, optional
        Regularization factor balancing the data term and the prior term, 
        where larger `_lambda` imposing more constrains on the prior term. 
    iter_max : int or uint, optional 
        Maximum number of iterations.
    accelerate : boolean, optional
        Enable acceleration in GAP.
    noise_estimate : boolean, optional
        Enable noise estimation in the denoiser.
    sigma : one-dimensional (1D) ndarray of ints, uints or floats
        Input noise standard deviation for the denoiser if and only if noise 
        estimation is disabled(i.e., noise_estimate==False). The scale of sigma 
        is [0, 255] regardless of the the scale of the input measurement and 
        masks.
    tv_weight : float, optional
        weight in total variation (TV) denoising.
    x0 : 3D ndarray 
        Start point (initialized value) for the iteration process of the 
        reconstruction.
    model : pretrained model for image/video denoising.

    Returns
    -------
    x : 3D ndarray
        Reconstructed 3D scene captured by the SCI system.

    References
    ----------
    .. [1] X. Liao, H. Li, and L. Carin, "Generalized Alternating Projection 
           for Weighted-$\ell_{2,1}$ Minimization with Applications to 
           Model-Based Compressive Sensing," SIAM Journal on Imaging Sciences, 
           vol. 7, no. 2, pp. 797-823, 2014.
    .. [2] X. Yuan, "Generalized alternating projection based total variation 
           minimization for compressive sensing," in IEEE International 
           Conference on Image Processing (ICIP), 2016, pp. 2539-2543.
    .. [3] Y. Liu, X. Yuan, J. Suo, D. Brady, and Q. Dai, "Rank Minimization 
           for Snapshot Compressive Imaging," IEEE Transactions on Pattern 
           Analysis and Machine Intelligence, doi:10.1109/TPAMI.2018.2873587, 
           2018.

    Code credit
    -----------
    Xin Yuan, Bell Labs, [email protected], created Aug 7, 2018.
    Yang Liu, Tsinghua University, [email protected], 
      updated Jan 22, 2019.

    See Also
    --------
    admm_denoise
    '''
    # [0] initialization
    if x0 is None:
        print(At)
        x0 = At(y, Phi)  # default start point (initialized value)
    if not isinstance(sigma, list):
        sigma = [sigma]
    if not isinstance(iter_max, list):
        iter_max = [iter_max] * len(sigma)
    y1 = np.zeros_like(y)
    Phi_sum = np.sum(Phi, 2)
    Phi_sum[Phi_sum == 0] = 1
    # [1] start iteration for reconstruction
    x = x0  # initialization
    psnr_all = []
    ssim_all = []
    k = 0
    device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
    model = net()
    model.load_state_dict(torch.load(r'./check_points/deep_denoiser.pth'))
    model.eval()
    for q, v in model.named_parameters():
        v.requires_grad = False
    model = model.to(device)
    for idx, nsig in enumerate(sigma):  # iterate all noise levels
        for it in range(iter_max[idx]):
            #print('max1_{0}_{1}:'.format(idx,it),np.max(x))
            yb = A(x, Phi)
            if accelerate:  # accelerated version of GAP
                y1 = y1 + (y - yb)
                x = x + _lambda * (At((y1 - yb) / Phi_sum, Phi))  # GAP_acc
            else:
                x = x + _lambda * (At((y - yb) / Phi_sum, Phi))  # GAP
            x = shift_back(x, step=1)
            # switch denoiser
            if denoiser.lower() == 'tv':  # total variation (TV) denoising
                x = denoise_tv_chambolle(x,
                                         nsig / 255,
                                         n_iter_max=tv_iter_max,
                                         multichannel=multichannel)
                #x= TV_denoiser(x, tv_weight, n_iter_max=tv_iter_max)
            elif denoiser.lower() == 'hsicnn':
                l_ch = 10
                m_ch = 10
                h_ch = 10
                if (k > 123 and k <= 125) or (k >= 119 and k <= 121) or (
                        k >= 115 and k <= 117
                ) or (k >= 111 and k <= 113) or (k >= 107 and k <= 109) or (
                        k >= 103 and k <= 105) or (k >= 99 and k <= 101) or (
                            k >= 95 and k <= 97) or (k >= 91 and k <= 93) or (
                                k >= 87 and k <= 89) or (k >= 83 and k <= 85):
                    tem = None
                    for i in range(31):
                        net_input = None
                        if i < 3:
                            ori_nsig = nsig

                            if i == 0:
                                net_input = np.dstack(
                                    (x[:, :, i], x[:, :, i], x[:, :,
                                                               i], x[:, :,
                                                                     i:i + 4]))
                            elif i == 1:
                                net_input = np.dstack(
                                    (x[:, :, i - 1], x[:, :, i - 1],
                                     x[:, :, i - 1], x[:, :, i:i + 4]))
                            elif i == 2:
                                net_input = np.dstack(
                                    (x[:, :, i - 2], x[:, :, i - 2],
                                     x[:, :, i - 1], x[:, :, i:i + 4]))
                            net_input = torch.from_numpy(
                                np.ascontiguousarray(net_input)).permute(
                                    2, 0, 1).float().unsqueeze(0)
                            net_input = net_input.to(device)
                            Nsigma = torch.full((1, 1, 1, 1),
                                                l_ch / 255.).type_as(net_input)
                            output = model(net_input, Nsigma)
                            output = output.data.squeeze().cpu().numpy()
                            if k < 0:
                                output = denoise_tv_chambolle(
                                    x[:, :, i],
                                    nsig / 255,
                                    n_iter_max=tv_iter_max,
                                    multichannel=False)
                            nsig = ori_nsig
                            if i == 0:
                                tem = output
                            else:
                                tem = np.dstack((tem, output))
                        elif i > 27:
                            ori_nsig = nsig
                            if k >= 45:
                                nsig /= 1
                            if i == 28:
                                net_input = np.dstack(
                                    (x[:, :, i - 3:i + 1], x[:, :, i + 1],
                                     x[:, :, i + 2], x[:, :, i + 2]))
                            elif i == 29:
                                net_input = np.dstack(
                                    (x[:, :, i - 3:i + 1], x[:, :, i + 1],
                                     x[:, :, i + 1], x[:, :, i + 1]))
                            elif i == 30:
                                net_input = np.dstack(
                                    (x[:, :, i - 3:i + 1], x[:, :,
                                                             i], x[:, :,
                                                                   i], x[:, :,
                                                                         i]))
                            net_input = torch.from_numpy(
                                np.ascontiguousarray(net_input)).permute(
                                    2, 0, 1).float().unsqueeze(0)
                            net_input = net_input.to(device)
                            Nsigma = torch.full((1, 1, 1, 1),
                                                m_ch / 255.).type_as(net_input)
                            output = model(net_input, Nsigma)
                            output = output.data.squeeze().cpu().numpy()
                            if k < 0:
                                output = denoise_tv_chambolle(
                                    x[:, :, i],
                                    10 / 255,
                                    n_iter_max=tv_iter_max,
                                    multichannel=False)
                            tem = np.dstack((tem, output))
                            nsig = ori_nsig
                        else:
                            ori_nsig = nsig
                            net_input = x[:, :, i - 3:i + 4]
                            net_input = torch.from_numpy(
                                np.ascontiguousarray(net_input)).permute(
                                    2, 0, 1).float().unsqueeze(0)
                            net_input = net_input.to(device)
                            Nsigma = torch.full((1, 1, 1, 1),
                                                h_ch / 255.).type_as(net_input)
                            output = model(net_input, Nsigma)
                            output = output.data.squeeze().cpu().numpy()
                            tem = np.dstack((tem, output))
                            nsig = ori_nsig
                    #x = np.clip(tem,0,1)
                    x = tem

                else:
                    x = denoise_tv_chambolle(x,
                                             nsig / 255,
                                             n_iter_max=tv_iter_max,
                                             multichannel=multichannel)
                    #x = TV_denoiser(x, tv_weight, n_iter_max=tv_iter_max)
            elif denoiser.lower() == 'bm3d':
                sigma = nsig / 255
                v = np.zeros((15, 15))
                for x1 in range(-7, 8, 1):
                    for x2 in range(-7, 8, 1):
                        v[x1 + 7, x2 + 7] = 1 / (x1**2 + x2**2 + 1)
                v = v / np.sum(v)
                for i in range(28):
                    x[:, :, i] = bm3d_deblurring(np.atleast_3d(x[:, :, i]),
                                                 sigma, v)
            else:
                raise ValueError('Unsupported denoiser {}!'.format(denoiser))
            # [optional] calculate image quality assessment, i.e., PSNR for
            # every five iterations
            if show_iqa and X_orig is not None:
                ssim_all.append(calculate_ssim(X_orig, x))
                psnr_all.append(psnr(X_orig, x))
                if (k + 1) % 1 == 0:
                    if not noise_estimate and nsig is not None:
                        if nsig < 1:
                            print(
                                '  GAP-{0} iteration {1: 3d}, sigma {2: 3g}/255, '
                                'PSNR {3:2.2f} dB.'.format(
                                    denoiser.upper(), k + 1, nsig * 255,
                                    psnr_all[k]),
                                'SSIM:{}'.format(ssim_all[k]))
                        else:
                            print(
                                '  GAP-{0} iteration {1: 3d}, sigma {2: 3g}, '
                                'PSNR {3:2.2f} dB.'.format(
                                    denoiser.upper(), k + 1, nsig,
                                    psnr_all[k]),
                                'SSIM:{}'.format(ssim_all[k]))
                    else:
                        print(
                            '  GAP-{0} iteration {1: 3d}, '
                            'PSNR {2:2.2f} dB.'.format(denoiser.upper(), k + 1,
                                                       psnr_all[k]),
                            'SSIM:{}'.format(ssim_all[k]))
            x = shift(x, step=1)
            if k == 123:
                break
            k = k + 1

    return x, psnr_all
Esempio n. 7
0
def calculate_psnr_ssim():
    dir = "/home/jakaria/Super_Resolution/Filter_Enhance_Detect/saved/"
    HR_DIR = "/home/jakaria/Super_Resolution/Datasets/COWC/DetectionPatches_256x256/Potsdam_ISPRS/HR/x4/valid_img/*"
    bicubic_DIR = "/home/jakaria/Super_Resolution/Datasets/COWC/DetectionPatches_256x256/Potsdam_ISPRS/Bic/x4/valid_img/*"
    img_GT = sorted(glob.glob(HR_DIR + '.jpg'))
    img_final_SR_enhanced_1 = sorted(
        glob.glob(dir + '/enhanced_SR_images_1/*.png'))
    img_final_SR_enhanced_2 = sorted(
        glob.glob(dir + '/enhanced_SR_images_2/*.png'))
    img_final_SR_enhanced_3 = sorted(
        glob.glob(dir + '/enhanced_SR_images_3/*.png'))
    img_final_SR = sorted(glob.glob(dir + '/final_SR_images_216000/*.png'))
    img_SR = sorted(glob.glob(dir + '/SR_images/*.png'))
    img_SR_combined = sorted(
        glob.glob(dir + '/combined_SR_images_216000/*.png'))
    img_Bic = sorted(glob.glob(bicubic_DIR + '.jpg'))

    psnr_enhanced_1 = 0
    psnr_enhanced_2 = 0
    psnr_enhanced_3 = 0
    psnr_final = 0
    psnr_SR = 0
    psnr_SR_combined = 0
    psnr_Bic = 0

    ssim_enhanced_1 = 0
    ssim_enhanced_2 = 0
    ssim_enhanced_3 = 0
    ssim_final = 0
    ssim_SR = 0
    ssim_SR_combined = 0
    ssim_Bic = 0

    total = len(img_SR)
    print(total)

    i = 0

    for im_gt, im_enhanced_1, im_enhanced_2, im_enhanced_3, im_final, im_SR, \
            im_SR_combined, im_Bic in zip(img_GT,
                                            img_final_SR_enhanced_1,
                                            img_final_SR_enhanced_2,
                                            img_final_SR_enhanced_3,
                                            img_final_SR, img_SR, img_SR_combined,
                                            img_Bic):
        print(
            os.path.basename(im_gt) + '--',
            os.path.basename(im_enhanced_1) + '--',
            os.path.basename(im_enhanced_2) + '--',
            os.path.basename(im_enhanced_3) + '--',
            os.path.basename(im_final) + '--',
            os.path.basename(im_SR) + '--',
            os.path.basename(im_SR_combined) + '--', os.path.basename(im_Bic))

        image_gt = cv2.imread(im_gt)
        image_enhanced_1 = cv2.imread(im_enhanced_1)
        image_enhanced_2 = cv2.imread(im_enhanced_2)
        image_enhanced_3 = cv2.imread(im_enhanced_3)
        image_final = cv2.imread(im_final)
        image_SR = cv2.imread(im_SR)
        image_SR_combined = cv2.imread(im_SR_combined)
        image_Bic = cv2.imread(im_Bic)

        psnr_enhanced_1 += calculate_psnr(image_gt, image_enhanced_1)
        psnr_enhanced_2 += calculate_psnr(image_gt, image_enhanced_2)
        psnr_enhanced_3 += calculate_psnr(image_gt, image_enhanced_3)
        psnr_final += calculate_psnr(image_gt, image_final)
        psnr_SR += calculate_psnr(image_gt, image_SR)
        psnr_SR_combined += calculate_psnr(image_gt, image_SR_combined)
        psnr_Bic += calculate_psnr(image_gt, image_Bic)

        ssim_enhanced_1 += calculate_ssim(image_gt, image_enhanced_1)
        ssim_enhanced_2 += calculate_ssim(image_gt, image_enhanced_2)
        ssim_enhanced_3 += calculate_ssim(image_gt, image_enhanced_3)
        ssim_final += calculate_ssim(image_gt, image_final)
        ssim_SR += calculate_ssim(image_gt, image_SR)
        ssim_SR_combined += calculate_ssim(image_gt, image_SR_combined)
        ssim_Bic += calculate_ssim(image_gt, image_Bic)

        i += 1
        print(i)

    avg_psnr_enhanced_1, avg_psnr_enhanced_2, avg_psnr_enhanced_3,  avg_psnr_final, \
        avg_psnr_SR, avg_psnr_SR_combined, avg_psnr_Bic = (psnr_enhanced_1 / total,
                                                           psnr_enhanced_2 / total,
                                                           psnr_enhanced_3 / total,
                                                           psnr_final / total,
                                                           psnr_SR / total,
                                                           psnr_SR_combined / total,
                                                           psnr_Bic / total)

    avg_ssim_enhanced_1, avg_ssim_enhanced_2, avg_ssim_enhanced_3, avg_ssim_final, \
        avg_ssim_SR, avg_ssim_SR_combined, avg_ssim_Bic = (ssim_enhanced_1 / total,
                                                           ssim_enhanced_2 / total,
                                                           ssim_enhanced_3 / total,
                                                           ssim_final / total,
                                                           ssim_SR / total,
                                                           ssim_SR_combined / total,
                                                           ssim_Bic / total)

    text_file = open(
        "/home/jakaria/Super_Resolution/Filter_Enhance_Detect/saved/Output_216000.txt",
        "a")
    print("Enhanced PSNR_1: %4.2f" % avg_psnr_enhanced_1)
    text_file.write("Enhanced PSNR_1: %4.2f \n" % avg_psnr_enhanced_1)
    print("Enhanced PSNR_2: %4.2f" % avg_psnr_enhanced_2)
    text_file.write("Enhanced PSNR_2: %4.2f \n" % avg_psnr_enhanced_2)
    print("Enhanced PSNR_3: %4.2f" % avg_psnr_enhanced_3)
    text_file.write("Enhanced PSNR_3: %4.2f \n" % avg_psnr_enhanced_3)
    print("Final PSNR: %4.2f" % avg_psnr_final)
    text_file.write("Final PSNR: %4.2f \n" % avg_psnr_final)
    print("SR PSNR: %4.2f" % avg_psnr_SR)
    text_file.write("SR PSNR: %4.2f \n" % avg_psnr_SR)
    print("SR PSNR_combined: %4.2f" % avg_psnr_SR_combined)
    text_file.write("SR PSNR_combined: %4.2f \n" % avg_psnr_SR_combined)
    print("Bic PSNR: %4.2f" % avg_psnr_Bic)
    text_file.write("Bic PSNR: %4.2f \n" % avg_psnr_Bic)

    print("Enhanced SSIM_1: %5.4f" % avg_ssim_enhanced_1)
    text_file.write("Enhanced SSIM_1: %5.4f \n" % avg_ssim_enhanced_1)
    print("Enhanced SSIM_2: %5.4f" % avg_ssim_enhanced_2)
    text_file.write("Enhanced SSIM_2: %5.4f \n" % avg_ssim_enhanced_2)
    print("Enhanced SSIM_3: %5.4f" % avg_ssim_enhanced_3)
    text_file.write("Enhanced SSIM_3: %5.4f \n" % avg_ssim_enhanced_3)
    print("Final SSIM: %5.4f" % avg_ssim_final)
    text_file.write("Final SSIM: %5.4f \n" % avg_ssim_final)
    print("SR SSIM: %5.4f" % avg_ssim_SR)
    text_file.write("SR SSIM: %5.4f \n" % avg_ssim_SR)
    print("SR SSIM_combined: %5.4f" % avg_ssim_SR_combined)
    text_file.write("SR SSIM_combined: %5.4f \n" % avg_ssim_SR_combined)
    print("Bic SSIM: %5.4f" % avg_ssim_Bic)
    text_file.write("Bic SSIM: %5.4f \n" % avg_ssim_Bic)
    text_file.close()
Esempio n. 8
0
            sr_img = sr_img / 255.0

            crop_border = opt["crop_border"] if opt["crop_border"] else opt["scale"]
            if crop_border == 0:
                cropped_sr_img = sr_img
                cropped_gt_img = gt_img
            else:
                cropped_sr_img = sr_img[
                    crop_border:-crop_border, crop_border:-crop_border, :
                ]
                cropped_gt_img = gt_img[
                    crop_border:-crop_border, crop_border:-crop_border, :
                ]

            psnr = util.calculate_psnr(cropped_sr_img * 255, cropped_gt_img * 255)
            ssim = util.calculate_ssim(cropped_sr_img * 255, cropped_gt_img * 255)

            test_results["psnr"].append(psnr)
            test_results["ssim"].append(ssim)

            if gt_img.shape[2] == 3:  # RGB image
                sr_img_y = bgr2ycbcr(sr_img, only_y=True)
                gt_img_y = bgr2ycbcr(gt_img, only_y=True)
                if crop_border == 0:
                    cropped_sr_img_y = sr_img_y
                    cropped_gt_img_y = gt_img_y
                else:
                    cropped_sr_img_y = sr_img_y[
                        crop_border:-crop_border, crop_border:-crop_border
                    ]
                    cropped_gt_img_y = gt_img_y[
Esempio n. 9
0
def test(test_loader, net, scale, scene_name):
    train_mode = False
    net.eval()
    count = 0
    PSNR = 0
    SSIM = 0
    PSNR_t = 0
    SSIM_t = 0
    out = []
    for image_num, data in enumerate(test_loader):
        x_input, target = data[0], data[1]
        # print(x_input.shape)
        B, _, _, _, _ = x_input.shape
        with torch.no_grad():
            x_input = Variable(x_input).cuda()
            target = Variable(target).cuda()
            t0 = time.time()
            # prediction = net(x_input)
            # ensamble test
            if True:
                # x_input = Variable(x_input).cuda()
                x_input_list = [x_input]
                for tf in ['v', 'h', 't']:
                    x_input_list.extend(
                        [test_ensamble(t, tf) for t in x_input_list])
                prediction_list = [net(aug) for aug in x_input_list]
                for i in range(len(prediction_list)):
                    if i > 3:
                        prediction_list[i] = test_ensamble_2(
                            prediction_list[i], 't')
                    if i % 4 > 1:
                        prediction_list[i] = test_ensamble_2(
                            prediction_list[i], 'h')
                    if (i % 4) % 2 == 1:
                        prediction_list[i] = test_ensamble_2(
                            prediction_list[i], 'v')
                prediction_cat = torch.cat(prediction_list, dim=0)
                prediction = prediction_cat.mean(dim=0, keepdim=True)

        torch.cuda.synchronize()
        t1 = time.time()
        print("===> Timer: %.4f sec." % (t1 - t0))
        prediction = prediction.unsqueeze(2)
        count += 1
        prediction = prediction.squeeze(0).permute(1, 2, 3, 0)  # [T,H,W,C]
        prediction = prediction.cpu().numpy(
        )[:, :, :, ::-1]  # tensor -> numpy, rgb -> bgr
        target = target.squeeze(0).permute(1, 2, 3, 0)  # [T,H,W,C]
        target = target.cpu().numpy()[:, :, :, ::
                                      -1]  # tensor -> numpy, rgb -> bgr

        save_img(prediction[0], scene_name, 2)
        # test_Y______________________
        # prediction_Y = bgr2ycbcr(prediction[0])
        # target_Y = bgr2ycbcr(target[0])
        # prediction_Y = prediction_Y * 255
        # target_Y = target_Y * 255
        # test_RGB _______________________________
        prediction_Y = prediction[0] * 255
        target_Y = target[0] * 255
        # ________________________________
        # calculate PSNR and SSIM
        print('PSNR: {:.6f} dB, \tSSIM: {:.6f}'.format(
            calculate_psnr(prediction_Y, target_Y),
            calculate_ssim(prediction_Y, target_Y)))
        PSNR += calculate_psnr(prediction_Y, target_Y)
        SSIM += calculate_ssim(prediction_Y, target_Y)
        out.append(calculate_psnr(prediction_Y, target_Y))

        print('===>{} PSNR = {}'.format(scene_name, PSNR))
        print('===>{} SSIM = {}'.format(scene_name, SSIM))
        PSNR_t = PSNR
        SSIM_t = SSIM

    return PSNR_t, SSIM_t