def __init__(self, config):

        # Config
        self.config = config

        self.start = 0  # Unless using pre-trained model

        # Create directories if not exist
        utils.make_folder(self.config.save_path)
        utils.make_folder(self.config.model_weights_path)
        utils.make_folder(self.config.sample_images_path)

        # Copy files
        utils.write_config_to_file(self.config, self.config.save_path)
        utils.copy_scripts(self.config.save_path)

        # Check for CUDA
        utils.check_for_CUDA(self)

        # Make dataloader
        self.dataloader, self.num_of_classes = utils.make_dataloader(
            self.config.batch_size_in_gpu, self.config.dataset,
            self.config.data_path, self.config.shuffle, self.config.drop_last,
            self.config.dataloader_args, self.config.resize,
            self.config.imsize, self.config.centercrop,
            self.config.centercrop_size)

        # Data iterator
        self.data_iter = iter(self.dataloader)

        # Build G and D
        self.build_models()

        if self.config.adv_loss == 'dcgan':
            self.criterion = nn.BCELoss()
Esempio n. 2
0
import sys

import utils

from parameters import *
from sagan_models import Generator, Discriminator

if __name__ == '__main__':
    config = get_parameters()
    config.command = 'python ' + ' '.join(sys.argv)
    print(config)
    utils.check_for_CUDA(config)

    # Load pretrained model (if provided)
    if config.pretrained_model != '':
        utils.load_pretrained_model(config)
    else:
        assert config.num_of_classes, "Please provide number of classes! Eg. python3 test.py --num_of_classes 10"
        config.G = Generator(config.z_dim, config.g_conv_dim,
                             config.num_of_classes).to(config.device)
        config.D = Discriminator(config.d_conv_dim,
                                 config.num_of_classes).to(config.device)

    config.G.eval()
    config.D.eval()
    print(config.G, config.D)
Esempio n. 3
0
    def __init__(self, config):

        # Images data path & Output path
        self.dataset = config.dataset
        self.data_path = config.data_path
        self.save_path = os.path.join(config.save_path, config.name)

        # Training settings
        self.batch_size = config.batch_size
        self.total_step = config.total_step
        self.d_steps_per_iter = config.d_steps_per_iter
        self.g_steps_per_iter = config.g_steps_per_iter
        self.d_lr = config.d_lr
        self.g_lr = config.g_lr
        self.beta1 = config.beta1
        self.beta2 = config.beta2
        self.inst_noise_sigma = config.inst_noise_sigma
        self.inst_noise_sigma_iters = config.inst_noise_sigma_iters
        self.start = 0  # Unless using pre-trained model

        # Image transforms
        self.shuffle = config.shuffle
        self.drop_last = config.drop_last
        self.resize = config.resize
        self.imsize = config.imsize
        self.centercrop = config.centercrop
        self.centercrop_size = config.centercrop_size
        self.tanh_scale = config.tanh_scale
        self.normalize = config.normalize

        # Step size
        self.log_step = config.log_step
        self.sample_step = config.sample_step
        self.model_save_step = config.model_save_step
        self.save_n_images = config.save_n_images
        self.max_frames_per_gif = config.max_frames_per_gif

        # Pretrained model
        self.pretrained_model = config.pretrained_model

        # Misc
        self.manual_seed = config.manual_seed
        self.disable_cuda = config.disable_cuda
        self.parallel = config.parallel
        self.dataloader_args = config.dataloader_args

        # Output paths
        self.model_weights_path = os.path.join(self.save_path,
                                               config.model_weights_dir)
        self.sample_path = os.path.join(self.save_path, config.sample_dir)

        # Model hyper-parameters
        self.adv_loss = config.adv_loss
        self.z_dim = config.z_dim
        self.g_conv_dim = config.g_conv_dim
        self.d_conv_dim = config.d_conv_dim
        self.lambda_gp = config.lambda_gp

        # Model name
        self.name = config.name

        # Create directories if not exist
        utils.make_folder(self.save_path)
        utils.make_folder(self.model_weights_path)
        utils.make_folder(self.sample_path)

        # Copy files
        utils.write_config_to_file(config, self.save_path)
        utils.copy_scripts(self.save_path)

        # Check for CUDA
        utils.check_for_CUDA(self)

        # Make dataloader
        self.dataloader, self.num_of_classes = utils.make_dataloader(
            self.batch_size, self.dataset, self.data_path, self.shuffle,
            self.drop_last, self.dataloader_args, self.resize, self.imsize,
            self.centercrop, self.centercrop_size)

        # Data iterator
        self.data_iter = iter(self.dataloader)

        # Build G and D
        self.build_models()

        # Start with pretrained model (if it exists)
        if self.pretrained_model != '':
            utils.load_pretrained_model(self)

        if self.adv_loss == 'dcgan':
            self.criterion = nn.BCELoss()
Esempio n. 4
0
from parameters import get_params

if __name__ == '__main__':

    # Get all parameters
    args = get_params(eval_mode=True)
    args.command = 'python ' + ' '.join(sys.argv)
    assert args.pth
    assert os.path.exists(args.pth)
    assert args.data_path
    assert os.path.exists(args.data_path)
    assert args.out_path
    assert os.path.exists(args.out_path)

    # CUDA
    utils.check_for_CUDA(args)

    # Load pth
    pth_dir_name = os.path.dirname(args.pth)
    print("Loading model", os.path.join(pth_dir_name, 'model.pth'))
    model = torch.load(os.path.join(pth_dir_name, 'model.pth'))
    print("Loading model state dict", args.pth)
    model.load_state_dict(torch.load(args.pth))
    model = model.to(args.device)

    # Make dataloader with Eval parameters
    print("Making dataloader")
    args.valid_split = 0
    args.centercrop = False
    args.shuffle = False
    args.drop_last = False