Esempio n. 1
0
    def __filter_detection(self, segments_indexes: List[int], data: list):
        delete_list = []
        variance_error = self.state.window_size
        close_segments = utils.close_filtering(segments_indexes,
                                               variance_error)
        segments_indexes = utils.best_pattern(close_segments, data,
                                              self.get_extremum_type().value)
        if len(segments_indexes) == 0 or len(self.state.pattern_center) == 0:
            return []
        pattern_data = self.state.pattern_model
        for segment_index in segments_indexes:
            if segment_index <= self.state.window_size or segment_index >= (
                    len(data) - self.state.window_size):
                delete_list.append(segment_index)
                continue
            convol_data = utils.get_interval(data, segment_index,
                                             self.state.window_size)
            percent_of_nans = convol_data.isnull().sum() / len(convol_data)
            if len(convol_data) == 0 or percent_of_nans > 0.5:
                delete_list.append(segment_index)
                continue
            elif 0 < percent_of_nans <= 0.5:
                nan_list = utils.find_nan_indexes(convol_data)
                convol_data = utils.nan_to_zero(convol_data, nan_list)
                pattern_data = utils.nan_to_zero(pattern_data, nan_list)
            conv = scipy.signal.fftconvolve(convol_data, pattern_data)
            if len(conv) == 0:
                delete_list.append(segment_index)
                continue
            upper_bound = self.state.convolve_max * (
                1 + POSITIVE_SEGMENT_MEASUREMENT_ERROR)
            lower_bound = self.state.convolve_min * (
                1 - POSITIVE_SEGMENT_MEASUREMENT_ERROR)
            delete_up_bound = self.state.conv_del_max * (
                1 + NEGATIVE_SEGMENT_MEASUREMENT_ERROR)
            delete_low_bound = self.state.conv_del_min * (
                1 - NEGATIVE_SEGMENT_MEASUREMENT_ERROR)
            max_conv = max(conv)
            if max_conv > upper_bound or max_conv < lower_bound:
                delete_list.append(segment_index)
            elif max_conv < delete_up_bound and max_conv > delete_low_bound:
                delete_list.append(segment_index)

        for item in delete_list:
            segments_indexes.remove(item)
        segments_indexes = utils.remove_duplicates_and_sort(segments_indexes)
        return segments_indexes
Esempio n. 2
0
    def __filter_detection(self, segments: list, data: list) -> list:
        delete_list = []
        variance_error = self.state['WINDOW_SIZE']
        close_patterns = utils.close_filtering(segments, variance_error)
        segments = utils.best_pattern(close_patterns, data, 'min')
        if len(segments) == 0 or len(self.state.get('pattern_center',
                                                    [])) == 0:
            segments = []
            return segments
        pattern_data = self.state['pattern_model']
        up_height = self.state['height_max'] * (1 + self.HEIGHT_ERROR)
        low_height = self.state['height_min'] * (1 - self.HEIGHT_ERROR)
        up_conv = self.state['convolve_max'] * (1 + 1.5 * self.CONV_ERROR)
        low_conv = self.state['convolve_min'] * (1 - self.CONV_ERROR)
        up_del_conv = self.state['conv_del_max'] * (1 + self.DEL_CONV_ERROR)
        low_del_conv = self.state['conv_del_min'] * (1 - self.DEL_CONV_ERROR)
        for segment in segments:
            if segment > self.state['WINDOW_SIZE']:
                convol_data = utils.get_interval(data, segment,
                                                 self.state['WINDOW_SIZE'])
                convol_data = utils.subtract_min_without_nan(convol_data)
                percent_of_nans = convol_data.isnull().sum() / len(convol_data)
                if percent_of_nans > 0.5:
                    delete_list.append(segment)
                    continue
                elif 0 < percent_of_nans <= 0.5:
                    nan_list = utils.find_nan_indexes(convol_data)
                    convol_data = utils.nan_to_zero(convol_data, nan_list)
                    pattern_data = utils.nan_to_zero(pattern_data, nan_list)
                conv = scipy.signal.fftconvolve(convol_data, pattern_data)
                pattern_height = convol_data.values.max()
                if pattern_height > up_height or pattern_height < low_height:
                    delete_list.append(segment)
                    continue
                if max(conv) > up_conv or max(conv) < low_conv:
                    delete_list.append(segment)
                    continue
                if max(conv) < up_del_conv and max(conv) > low_del_conv:
                    delete_list.append(segment)
            else:
                delete_list.append(segment)
        for item in delete_list:
            segments.remove(item)

        return set(segments)
Esempio n. 3
0
    def __filter_detection(self, segments, data):
        delete_list = []
        variance_error = self.state['WINDOW_SIZE']
        close_patterns = utils.close_filtering(segments, variance_error)
        segments = utils.best_pattern(close_patterns, data, 'max')

        if len(segments) == 0 or len(self.state.get('pattern_center',
                                                    [])) == 0:
            segments = []
            return segments
        pattern_data = self.state['pattern_model']
        upper_bound = self.state['convolve_max'] * 1.2
        lower_bound = self.state['convolve_min'] * 0.8
        delete_up_bound = self.state['conv_del_max'] * 1.02
        delete_low_bound = self.state['conv_del_min'] * 0.98
        for segment in segments:
            if segment > self.state['WINDOW_SIZE'] and segment < (
                    len(data) - self.state['WINDOW_SIZE']):
                convol_data = utils.get_interval(data, segment,
                                                 self.state['WINDOW_SIZE'])
                percent_of_nans = convol_data.isnull().sum() / len(convol_data)
                if len(convol_data) == 0 or percent_of_nans > 0.5:
                    delete_list.append(segment)
                    continue
                elif 0 < percent_of_nans <= 0.5:
                    nan_list = utils.find_nan_indexes(convol_data)
                    convol_data = utils.nan_to_zero(convol_data, nan_list)
                    pattern_data = utils.nan_to_zero(pattern_data, nan_list)
                conv = scipy.signal.fftconvolve(convol_data, pattern_data)
                try:
                    if max(conv) > upper_bound or max(conv) < lower_bound:
                        delete_list.append(segment)
                    elif max(conv) < delete_up_bound and max(
                            conv) > delete_low_bound:
                        delete_list.append(segment)
                except ValueError:
                    delete_list.append(segment)
            else:
                delete_list.append(segment)
        for item in delete_list:
            segments.remove(item)

        return set(segments)
Esempio n. 4
0
    def __filter_detection(self, segments: List[int], data: pd.Series) -> list:
        delete_list = []
        variance_error = self.state.window_size
        close_patterns = utils.close_filtering(segments, variance_error)
        segments = self.get_best_pattern(close_patterns, data)

        if len(segments) == 0 or len(self.state.pattern_model) == 0:
            return []
        pattern_data = self.state.pattern_model
        up_height = self.state.height_max * (1 + self.HEIGHT_ERROR)
        low_height = self.state.height_min * (1 - self.HEIGHT_ERROR)
        up_conv = self.state.convolve_max * (1 + 1.5 * self.CONV_ERROR)
        low_conv = self.state.convolve_min * (1 - self.CONV_ERROR)
        up_del_conv = self.state.conv_del_max * (1 + self.DEL_CONV_ERROR)
        low_del_conv = self.state.conv_del_min * (1 - self.DEL_CONV_ERROR)
        for segment in segments:
            if segment > self.state.window_size:
                convol_data = utils.get_interval(data, segment, self.state.window_size)
                convol_data = utils.subtract_min_without_nan(convol_data)
                percent_of_nans = convol_data.isnull().sum() / len(convol_data)
                if percent_of_nans > 0.5:
                    delete_list.append(segment)
                    continue
                elif 0 < percent_of_nans <= 0.5:
                    nan_list = utils.find_nan_indexes(convol_data)
                    convol_data = utils.nan_to_zero(convol_data, nan_list)
                    pattern_data = utils.nan_to_zero(pattern_data, nan_list)
                conv = scipy.signal.fftconvolve(convol_data, pattern_data)
                pattern_height = convol_data.values.max()
                if pattern_height > up_height or pattern_height < low_height:
                    delete_list.append(segment)
                    continue
                if max(conv) > up_conv or max(conv) < low_conv:
                    delete_list.append(segment)
                    continue
                if max(conv) < up_del_conv and max(conv) > low_del_conv:
                    delete_list.append(segment)
            else:
                delete_list.append(segment)
        for item in delete_list:
            segments.remove(item)
        return set(segments)