cv2.imread(val_input_names[ind], -1)[:args.crop_height, :args.crop_width]), axis=0) / 255.0 gt = cv2.imread(val_output_names[ind], -1)[:args.crop_height, :args.crop_width] st = time.time() output_image = sess.run(network, feed_dict={input: input_image}) output_image = np.array(output_image[0, :, :, :]) output_image = helpers.reverse_one_hot(output_image) out_eval_image = output_image[:, :, 0] out_vis_image = helpers.colour_code_segmentation(output_image) accuracy = utils.compute_avg_accuracy(out_eval_image, gt) class_accuracies = utils.compute_class_accuracies( out_eval_image, gt, num_classes) prec = utils.precision(out_eval_image, gt) rec = utils.recall(out_eval_image, gt) f1 = utils.f1score(out_eval_image, gt) iou = utils.compute_mean_iou(out_eval_image, gt) file_name = utils.filepath_to_name(val_input_names[ind]) target.write("%s, %f, %f, %f, %f, %f" % (file_name, accuracy, prec, rec, f1, iou)) for item in class_accuracies: target.write(", %f" % (item)) target.write("\n") scores_list.append(accuracy)
cv2.cvtColor( cv2.imread(test_input_names[ind], -1), cv2.COLOR_BGR2RGB)[:args.crop_height, :args.crop_width]), axis=0) / 255.0 st = time.time() output_image = sess.run(network, feed_dict={z: input_image}) gt_map = cv2.imread(test_output_names[ind], -1)[:args.crop_height, :args.crop_width] output_image = np.array(output_image[0, :, :, :]) output_image = helpers.reverse_one_hot(output_image) output_image = output_image[:, :, 0] out_vis_image = helpers.colour_code_segmentation(output_image) accuracy = utils.compute_avg_accuracy(output_image, gt_map) class_accuracies = utils.compute_class_accuracies(output_image, gt_map) prec = utils.precision(output_image, gt_map) rec = utils.recall(output_image, gt_map) f1 = utils.f1score(output_image, gt_map) iou = utils.compute_mean_iou(output_image, gt_map) file_name = utils.filepath_to_name(test_input_names[ind]) target.write("%s, %f, %f, %f, %f, %f" % (file_name, accuracy, prec, rec, f1, iou)) for item in class_accuracies: target.write(", %f" % (item)) target.write("\n") scores_list.append(accuracy) class_scores_list.append(class_accuracies)