def update(self): if connected_to_internet(): data = self.fetcher.fetch(self.date_from) # update whole data, because data can be changed after initial release data.dropna(axis=0, how='any', inplace=True) self._combine_data(data) self.save() self.last_fetched = datetime.datetime.now() self.check_up_to_date()
np.random.seed(args.seed) torch.manual_seed(args.seed) torch.backends.cudnn.deterministic = args.torch_deterministic env.seed(args.seed) env.action_space.seed(args.seed) env.observation_space.seed(args.seed) ##################################### # book keeping to log stuff if args.dryrun: writer = None weight_save_path = 'model_dryrun.ckpt' else: # check internet connection # for offline wandb. Will load everything on cloud afterwards if not connected_to_internet(): import json # save a json file with your wandb api key in your home folder as {'my_wandb_api_key': 'INSERT API HERE'} # NOTE this is only for running on MIT Supercloud with open(os.path.expanduser('~')+'/keys.json') as json_file: key = json.load(json_file) my_wandb_api_key = key['my_wandb_api_key'] # NOTE change here as well os.environ["WANDB_API_KEY"] = my_wandb_api_key # my Wandb api key os.environ["WANDB_MODE"] = "dryrun" start_time = time.strftime("%H_%M_%S-%d_%m_%Y", time.localtime()) pretty_env_name = get_pretty_env_name(args.env_name) experiment_name = f"{args.exp_name}_{pretty_env_name}_{args.seed}_{start_time}" # create only one wandb logger instead of 8/16!!! if MPI.COMM_WORLD.Get_rank() == 0:
def update(self): if connected_to_internet(): LOGGER.send_info("Spuštěn update.") self._update_datasets() self.app.callback_queue.put(self._update_controllers)