Esempio n. 1
0
def write_reference(args):
	input_dir, taxid, output_dir = args
	foundprots, elution_datas = utils.load_data(input_dir, [])
	gs = utils.create_goldstandard(taxid, foundprots)
	out = gs.complexes.to_string()
	outFH = open(output_dir, "w")
	print >> outFH, out
	outFH.close()
Esempio n. 2
0
def write_reference(args):
    input_dir, taxid, output_dir = args
    foundprots, elution_datas = utils.load_data(input_dir, [])
    gs = utils.create_goldstandard(taxid, foundprots)
    out = gs.complexes.to_string()
    outFH = open(output_dir, "w")
    print >> outFH, out
    outFH.close()
Esempio n. 3
0
def main():
	feature_combination, input_dir, use_rf, num_cores, mode, anno_source, anno_F, target_taxid, refF, output_dir = sys.argv[1:]

	#Create feature combination
	if feature_combination == "00000000": sys.exit()
	scores = [CS.MutualInformation(2), CS.Bayes(3), CS.Euclidiean(), CS.Wcc(), CS.Jaccard(), CS.Poisson(5), CS.Pearson(), CS.Apex()]
	this_scores = []
	for i, feature_selection in enumerate(feature_combination):
		if feature_selection == "1": this_scores.append(scores[i])

	print "\t".join([fs.name for fs in this_scores])

	# Initialize CLF
	use_rf = use_rf == "True"
	num_cores = int(num_cores)
	clf = CS.CLF_Wrapper(num_cores, use_rf)

	# Load elution data
	foundprots, elution_datas = utils.load_data(input_dir, this_scores)

	# Generate reference data set
	if refF == "":
		all_gs = utils.create_goldstandard(target_taxid, foundprots)
	else:
		all_gs = Goldstandard_from_cluster_File(refF, foundprots)
	all_gs = utils.create_goldstandard(target_taxid, foundprots)
	#all_gs = Goldstandard_from_cluster_File(refF, foundprots)
#	sys.exit()


	scoreCalc = CS.CalculateCoElutionScores(this_scores, elution_datas, output_dir + ".scores.txt", num_cores=num_cores, cutoff= 0.5)
#	scoreCalc.calculate_coelutionDatas(all_gs)
	scoreCalc.readTable(output_dir + ".scores.txt", all_gs)

	print "training ppis: %i" % len(set(scoreCalc.ppiToIndex.keys()))

	#n_fold cross validation to test the stability of preicted PPIs
	utils.stability_evaluation(10, all_gs, scoreCalc, clf, output_dir, mode, anno_source, anno_F)
	sys.exit()

	#n_fold cross validation to select the best features.
	n_fold_cross_validation(10, all_gs, scoreCalc, clf, output_dir, mode, anno_source, anno_F)

	sys.exit()

	###### actually predict the network using all data
	train, eval = all_gs.split_into_holdout_training(set(scoreCalc.ppiToIndex.keys()))

	print "All comp:%i" % len(all_gs.complexes.complexes)
	print "Train comp:%i" % len(train.complexes.complexes)
	print "Eval comp:%i" % len(eval.complexes.complexes)

	print "Num valid ppis in training pos: %i" % len(train.positive)
	print "Num valid ppis in training neg: %i" % len(train.negative)
	print "Num valid ppis in eval pos: %i" % len(eval.positive)
	print "Num valid ppis in eval neg: %i" % len(eval.negative)

	# Evaluate classifier
	utils.bench_clf(scoreCalc, train, eval, clf, output_dir, verbose=True)

	functionalData = ""
	if mode != "exp":
		functionalData = utils.get_FA_data(anno_source, anno_F)

	print functionalData.scores.shape

	# Predict protein interaction
	network = utils.make_predictions(scoreCalc, mode, clf, all_gs, functionalData)
	outFH = open("%s.%s.pred.txt" % (output_dir, mode + anno_source), "w")
	print >> outFH, "\n".join(network)
	outFH.close()

	# Predicting clusters
	utils.predict_clusters("%s.%s.pred.txt" % (output_dir, mode + anno_source), "%s.%s.clust.txt" % (output_dir, mode + anno_source))

	# Evaluating predicted clusters
	pred_clusters = GS.Clusters(False)
	pred_clusters.read_file("%s.%s.clust.txt" % (output_dir, mode + anno_source))
#	utils.clustering_evaluation(train.complexes, pred_clusters, "Train", True)
	clusterEvaluationScores = utils.clustering_evaluation(eval.complexes, pred_clusters, "", True)
	outFH = open("%s.%s.evaluation.txt" % (output_dir, mode + anno_source), "w")

	head = clusterEvaluationScores[1]
	cluster_scores = clusterEvaluationScores[0]

	tmp_head = head.split("\t")
	tmp_scores = cluster_scores.split("\t")
	for i in range(len(tmp_head)):
		outFH.write("%s\t%s" % (tmp_head[i], tmp_scores[i]))
		outFH.write("\n")
Esempio n. 4
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-s",
        "--feature_selection",
        type=str,
        help=
        "Select which features to use. This is an 8 position long array of 0 and 1, where each position determines which co-elution feature to use. Features sorted by position are: MI, Bayes, Euclidean, WCC, Jaccard, PCCN, PCC, and Apex.  Each default=11101001",
        default="11101001")
    parser.add_argument(
        "input_dir",
        type=str,
        help="Directory containing the elution files for each experiment")

    parser.add_argument(
        "-t",
        "--taxid",
        type=str,
        help="TAXID to automatically download reference from GO,CORUM,INtACT",
        default="")
    parser.add_argument(
        "-c",
        "--cluster",
        type=str,
        help="Path to file containing protein clsuter reference",
        default="")
    parser.add_argument("-p",
                        "--ppi",
                        type=str,
                        help="path to ppi File",
                        default="")

    parser.add_argument("output_dir",
                        type=str,
                        help="Directory containing the output files")
    parser.add_argument("-o",
                        "--output_prefix",
                        type=str,
                        help="Prefix name for all output Files",
                        default="Out")

    parser.add_argument(
        "-M",
        "--classifier",
        type=str,
        help="Select which classifier to use. Values: RF SVM, default RF",
        default="RF")
    parser.add_argument("-n",
                        "--num_cores",
                        type=int,
                        help="Number of cores to be used, default 1",
                        default=1)

    parser.add_argument(
        "-m",
        "--mode",
        type=str,
        help=
        "Run EPIC with experimental, functional, or both evidences. Values: EXP, FA, COMB, default: EXP  ",
        default="EXP")
    parser.add_argument(
        "-f",
        "--fun_anno_source",
        type=str,
        help=
        "Where to get functional annotaiton from. Values: STRING or GM or FILE, default= GM",
        default="GM")
    parser.add_argument(
        "-F",
        "--fun_anno_file",
        type=str,
        help=
        "Path to File containing functional annotation. This flag needs to be set when using FILE as fun_anno_source.",
    )
    parser.add_argument("-r",
                        "--co_elution_cutoff",
                        type=float,
                        help="Co-elution score cutoff. default 0.5",
                        default=0.5)
    parser.add_argument(
        "-R",
        "--classifier_cutoff",
        type=float,
        help="Classifier confidence valye cutoff. default = 0.5",
        default=0.5)
    parser.add_argument(
        "-e",
        "--elution_max_count",
        type=int,
        help=
        "Removies protein that have a maximal peptide count less than the given value. default = 1",
        default=1)
    parser.add_argument(
        "-E",
        "--frac_count",
        type=int,
        help=
        "Number of fracrions a protein needs to be measured in. default = 2",
        default=2)

    parser.add_argument(
        "-P",
        "--precalcualted_score_file",
        type=str,
        help=
        "Path to precalulated scorefile to read scores from for faster rerunning of EPIC. default = None",
        default="NONE")

    args = parser.parse_args()

    args.mode = args.mode.upper()
    args.fun_anno_source = args.fun_anno_source.upper()

    #Create feature combination
    if args.feature_selection == "00000000":
        print "Select at least one feature"
        sys.exit()

    this_scores = utils.get_fs_comb(args.feature_selection)
    print "\t".join([fs.name for fs in this_scores])

    # Initialize CLF
    use_rf = args.classifier == "RF"
    clf = CS.CLF_Wrapper(args.num_cores, use_rf)

    # Load elution data
    foundprots, elution_datas = utils.load_data(args.input_dir,
                                                this_scores,
                                                fc=args.frac_count,
                                                mfc=args.elution_max_count)

    # Generate reference data set
    gs = ""
    if ((args.taxid != "" and args.ppi != "")
            or (args.cluster != "" and args.ppi != "")):
        print "Refernce from cluster and PPI are nor compatiple. Please supply ppi or complex reference, not both!"
        sys.exit()

    if args.taxid == "" and args.ppi == "" and args.cluster == "":
        print "Please supply a reference by setting taxid, cluster, or ppi tag"
        sys.exit()

    gs_clusters = []
    if (args.taxid != "" and args.cluster == "" and args.ppi == ""):
        print "Loading clusters from GO, CORUM, and Intact"
        gs_clusters.extend(utils.get_reference_from_net(args.taxid))

    if args.cluster != "":
        print "Loading complexes from file"
        if args.mode == "FA":
            gs_clusters.append(GS.FileClusters(args.cluster, "all"))
        else:
            gs_clusters.append(GS.FileClusters(args.cluster, foundprots))

    if args.ppi != "":
        print "Reading PPI file from %s" % args.reference
        gs = Goldstandard_from_PPI_File(args.ppi, foundprots)

    print gs_clusters
    if len(gs_clusters) > 0:
        gs = utils.create_goldstandard(gs_clusters, args.taxid, foundprots)

    output_dir = args.output_dir + os.sep + args.output_prefix

    refFH = open(output_dir + ".ref_complexes.txt", "w")
    for comp in gs.complexes.complexes:
        print >> refFH, "%s\t%s" % (",".join(comp), ",".join(
            gs.complexes.complexes[comp]))
    refFH.close()

    scoreCalc = CS.CalculateCoElutionScores(this_scores,
                                            elution_datas,
                                            output_dir + ".scores.txt",
                                            num_cores=args.num_cores,
                                            cutoff=args.co_elution_cutoff)
    if args.precalcualted_score_file == "NONE":
        scoreCalc.calculate_coelutionDatas(gs)
    else:
        scoreCalc.readTable(args.precalcualted_score_file, gs)

    print scoreCalc.scores.shape

    functionalData = ""
    gs.positive = set(gs.positive & set(scoreCalc.ppiToIndex.keys()))
    gs.negative = set(gs.negative & set(scoreCalc.ppiToIndex.keys()))
    gs.rebalance()

    print len(gs.positive)
    print len(gs.negative)

    if args.mode != "EXP":
        print "Loading functional data"
        functionalData = utils.get_FA_data(args.fun_anno_source, args.taxid,
                                           args.fun_anno_file)
        print "Dimension of fun anno " + str(functionalData.scores.shape)

    print "Start benchmarking"

    if args.mode == "EXP":
        utils.cv_bench_clf(scoreCalc,
                           clf,
                           gs,
                           output_dir,
                           format="pdf",
                           verbose=True,
                           folds=5)

    if args.mode == "COMB":
        tmp_sc = copy.deepcopy(scoreCalc)
        tmp_sc.add_fun_anno(functionalData)
        utils.cv_bench_clf(tmp_sc,
                           clf,
                           gs,
                           output_dir,
                           format="pdf",
                           verbose=True,
                           folds=5)

    if args.mode == "FA":
        utils.cv_bench_clf(functionalData,
                           clf,
                           gs,
                           output_dir,
                           format="pdf",
                           verbose=True,
                           folds=5)

    # PPI evaluation
    print utils.cv_bench_clf(scoreCalc,
                             clf,
                             gs,
                             args.output_dir,
                             verbose=False,
                             format="pdf",
                             folds=5)
    #print "I am here"

    network = utils.make_predictions(scoreCalc,
                                     args.mode,
                                     clf,
                                     gs,
                                     fun_anno=functionalData)

    # Predict protein interaction
    outFH = open("%s.pred.txt" % (output_dir), "w")

    final_network = []
    for PPI in network:
        items = PPI.split("\t")
        if float(items[2]) >= args.classifier_cutoff:
            final_network.append(PPI)

    print >> outFH, "\n".join(final_network)
    outFH.close()

    # Predicting clusters
    utils.predict_clusters("%s.pred.txt" % (output_dir),
                           "%s.clust.txt" % (output_dir))

    # Evaluating predicted clusters
    pred_clusters = GS.Clusters(False)
    pred_clusters.read_file("%s.clust.txt" % (output_dir))
    overlapped_complexes_with_reference = gs.get_complexes(
    ).get_overlapped_complexes_set(pred_clusters)
    print "# of complexes in reference dataset: " + str(
        len(overlapped_complexes_with_reference))
    #clust_scores, header = utils.clustering_evaluation(gs.complexes, pred_clusters, "", False)
    clust_scores, header, composite_score = utils.clustering_evaluation(
        gs.complexes, pred_clusters, "", False)
    outFH = open("%s.eval.txt" % (output_dir), "w")
    header = header.split("\t")
    clust_scores = clust_scores.split("\t")
    for i, head in enumerate(header):
        print "%s\t%s" % (head, clust_scores[i])
        print >> outFH, "%s\t%s" % (head, clust_scores[i])
    outFH.close()