Esempio n. 1
0
 def all_models(cls, env):
     choices = cls.param_choices(env)
     if choices:
         for prm in dict_product(choices):
             yield cls(**prm)
     else:
         yield cls()
Esempio n. 2
0
def generate_configs(output_dir,
                     ngen=int(1.0e+5),
                     pixDepth=1,
                     pixWidth=1.5,
                     npix=5000,
                     spectra_path=None,
                     jobs=1):
    hist_dir = get_dir('../data/background_spectra')
    hists = [
        osp.join(hist_dir, item) for item in os.listdir(hist_dir)
        if item.endswith('.root')
    ]

    particle_names = [osp.basename(hist)[:-len('.root')] for hist in hists]

    fluxes = [get_total_flux(hist) for hist in hists]
    print("Total flux: %.3e" % np.sum(fluxes))
    priors = [flux / np.sum(fluxes) for flux in fluxes]
    print("Priors:\n  %s" % '\n  '.join([
        "%s: %.3e" % (particle, prior)
        for particle, prior in zip(particle_names, priors)
    ]))

    assert len(hists), 'there is no data for cosmic background spectra!'

    if spectra_path is None:
        spectra_path = hist_dir

    runtime_hists = [
        osp.join(spectra_path, osp.basename(hist)) for hist in hists
    ]

    configs = dict(
        beamEnergy=-1,
        particle_meta=[
            dict(output=osp.join(
                output_dir,
                '%s_%04d' % (osp.basename(hist)[:-len('.root')], job)),
                 particle=particle_name,
                 energyHisto=hist,
                 job=job)
            for particle_name, hist in zip(particle_names, runtime_hists)
            for job in range(jobs)
        ],
        ngen=ngen,
        pixDepth=pixDepth,
        pixWidth=pixWidth,
        npix=npix,
    )

    return dict_product(configs)
Esempio n. 3
0
 def conditions(self):
     conds = dict_product({
         'creation_date': str(datetime.now()),
         'clickDelay': 0,
         'moveDelay': 500,
         'encourage_planning': [False, True],
         # 'timeLimit': 240,
         # 'energy': 200,
         # 'moveEnergy': 2,
         # 'clickEnergy': 1,
         'depth': 3,
         'breadth': 2,
         'inspectCost': 1,
         'bonus_rate': 0.001
     })
     for c in conds:
         if c['encourage_planning']:
             c['mu'] = -4
             c['sigma'] = 16
         else:
             c['mu'] = 8
             c['sigma'] = 3
         yield c
Esempio n. 4
0
 def trials(self, params):
     for _ in range(params['n_trial']):
         yield from dict_product(params)
Esempio n. 5
0
    BASE_CONFIG = json.load(f)

PARAMS = {
    "game": ["Humanoid-v2"],
    "mode": ["ppo"],
    "clip_eps": [1e32],
    "out_dir": ["results/ppo_noclip_humanoid/agents"],
    "norm_rewards": ["returns"],
    "initialization": ["xavier"],
    "anneal_lr": [False],
    "value_clipping": [True],
    "entropy_coeff": [0.005],
    "ppo_lr_adam": [2e-5] * 40,
    "clip_grad_norm": [0.5],
    "val_lr": [5e-5],
    "lambda": [0.85],
    "cpu": [True],
    "advanced_logging": [True]
}

all_configs = [{**BASE_CONFIG, **p} for p in dict_product(PARAMS)]
if os.path.isdir("agent_configs/") or os.path.isdir("agents/"):
    raise ValueError(
        "Please delete the 'agent_configs/' and 'agents/' directories")
os.makedirs("agent_configs/")
os.makedirs("agents/")

for i, config in enumerate(all_configs):
    with open(f"agent_configs/{i}.json", "w") as f:
        json.dump(config, f)
Esempio n. 6
0
    #     print(f'exact solution computed in {t.elapsed} seconds')
    #     agents['optimal'] = FunctionPolicy(pi)

    for name, pol in agents.items():
        np.random.seed(45)
        df = pd.DataFrame(Agent(env, pol).run_many(5000, pbar=False))
        df['name'] = name
        df['n_city'] = n_city
        df['max_sims'] = max_sims
        df = df.set_index(['n_city', 'max_sims', 'name'])
        df.to_csv(f'data/weather/sims/{n_city}_{max_sims}_{name}.pkl')

    print(f'wrote {fn}')


from utils import dict_product
params = list(
    dict_product({
        'n_city': [10, 20, 30],
        'max_sims': [
            1,
            2,
            3,
            4,
        ]
    }))

print(f'running {len(params)} simulations')
jobs = [delayed(simulate)(**prm) for prm in params]
Parallel(min(len(jobs), 45))(jobs)