Esempio n. 1
0
def cvt_dataset(src_dir, dest_dir):
    if not os.path.exists(src_dir):
        raise Exception('cvt_dataset: src_dir does not exists!')

    if not os.path.exists(dest_dir):
        os.makedirs(dest_dir)

    if os.listdir(dest_dir):
        raise Exception('cvt_dataset: dest_dir must be an empty dir!')

    for node in os.listdir(src_dir):
        if os.path.isdir(os.path.join(src_dir, node)):
            cvt_dataset(os.path.join(src_dir, node),
                        os.path.join(dest_dir, node))
        else:
            name, ext = os.path.splitext(node)
            if ext != '.avi':
                continue
            frames = utils.extract_frames(os.path.join(src_dir, node))
            utils.save_frames(os.path.join(dest_dir, name), frames)

            global num_processed
            num_processed += 1
            if num_processed % 30 == 0:
                print('video(%s) has been processed' % num_processed)
Esempio n. 2
0
def __main():
    """Main function"""

    # Parameters declaration and parsing
    ap = argparse.ArgumentParser()
    ap.add_argument('-of',
                    '--out_dir',
                    required=False,
                    default='.',
                    help='Output directory')
    ap.add_argument('-i', '--input_video', required=True, help='Input video')
    ap.add_argument('-t',
                    '--threshold',
                    required=False,
                    default=50,
                    help='The threshold to decide if two frames are the same')
    args = ap.parse_args()

    frames = extract_frames(args.input_video)
    print('Total frames extracted: %d' % len(frames))

    save_images(frames, join(args.out_dir, 'all'))

    frames = get_unique_frames(frames, int(args.threshold))
    print('Unique frames: %d' % len(frames))

    save_images(frames, join(args.out_dir, 'uniques'))
Esempio n. 3
0
def main(args, callback=None):
    uid = uuid.uuid1()
    dir_name = './.TEMP-' + str(uid)
    os.makedirs(dir_name)

    audio_file = dir_name + '/audio.mp3'
    extract_audio(args.video, audio_file)

    frames_dir = dir_name + '/frames'
    os.makedirs(frames_dir)
    extract_frames(args.video, frames_dir)
    frames_count = len(glob(frames_dir + '/*'))
    audio_analyze = analyze(audio_file, frames_count)
    process(frames_dir,
            audio_analyze,
            args.size,
            neural=args.neural,
            colorize=args.colorize,
            brightify=args.brightify,
            callback=callback)
    construct_video(frames_dir, audio_file, get_fps(args.video), args.output)
    if not args.no_clean:
        rmtree(dir_name)
Esempio n. 4
0
def classify(model, input):
    yt = YouTube('https://youtube.com/embed/%s?start=%d&end=%d' %
                 (input['video'], start, end))
    video = yt.streams.all()[0]
    video_file = video.download(videoPath)
    num_segments = 16

    print('Extracting frames using ffmpeg...')
    frames = extract_frames(video_file, num_segments)

    # Prepare input tensor

    input = torch.stack([transform(frame) for frame in frames], 1).unsqueeze(0)

    # Make video prediction
    with torch.no_grad():
        logits = model(input)
        h_x = F.softmax(logits, 1).mean(dim=0)
        probs, idx = h_x.sort(0, True)

    # Output the prediction.
    return categories[idx[0]]
    """ print('RESULT ON ' + video_file)
Esempio n. 5
0
def main():

    parser = argparse.ArgumentParser(
        description='Full pipeline to download Youtube video and infer deep trackers.')
    parser.add_argument('--overwrite', action='store_true',
                        help='remove existing folder')
    # parser.add_argument('--YT_ID', type=str, default=None,
    #                     help='ID from YT')
    # parser.add_argument('--start', type=int, default=0,
    #                     help='starting time of the frames')
    # parser.add_argument('--duration', type=int, default=None,
    #                     help='duration time of the frames')
    # parser.add_argument('--ID', type=int, default=0,
    #                     help='ID of the sequence')
    parser.add_argument('--path', type=str, default="/home/$USER/Documents/Videos",
                        help='where to save the sequence/video/results')

    parser.add_argument('--CSV', type=str, default="TrackingNet 2.0 Test Set Extension - Final TrackingNet2.0.csv",
                    help='where to save the sequence/video/results')

    args = parser.parse_args()



    List_Sequences = os.path.join(args.path, args.CSV)

    df = pd.read_csv(List_Sequences)
    # print(df)

    for i, data in df.iterrows():
        # print(data)
        # print(data["Youtube_ID"])
        if i>6:
        # if (isinstance(data["Object_ID"], float)):
            # print(int(data["Object_ID"]))
            print(data)
            args.YT_ID = data["Youtube_ID"]
            args.start = int(data["Start Time"])
            args.duration = int(data["Duration"])
            args.ID = int(data["Object_ID"])
            print(args)
    # # remove previous BB
    # if args.overwrite:
    #     if os.path.exists(first_BB_path):
    #         shutil.rmtree(first_BB_path)

            # define all paths
            sequence_ID = args.YT_ID + "_" + str(args.ID)
            full_video_path = os.path.join(args.path, "Videos", args.YT_ID+'.mp4')
            sequence_path = os.path.join(args.path, "Sequences", sequence_ID)
            cut_video_path = os.path.join(sequence_path, 'video.mp4')
            frame_path = os.path.join(sequence_path, 'frames')
            frame_BB_path = os.path.join(sequence_path, 'frames_BB')
            first_BB_path = os.path.join(sequence_path, "initial_BB.txt")
            tracking_results_path = os.path.join(sequence_path, 'results')
            video_BB_path = os.path.join(sequence_path, 'video_BB.mkv')

        
            # Download the video
            download_video(args.YT_ID, full_video_path)

            #Cut the video
            cut_video(full_video_path, cut_video_path, args.start, args.duration)

            #extract frames
            extract_frames(cut_video_path, frame_path)

            # draw the first Bounding box
            if not os.path.exists(first_BB_path):
                draw_first_BB(sequence_path, frame_path, first_BB_path)
Esempio n. 6
0
def run_single_sequence(args):

    # define all paths
    sequence_ID = args.YT_ID + "_" + str(args.ID)
    full_video_path = os.path.join(args.path, "Videos", args.YT_ID + '.mp4')
    sequence_path = os.path.join(args.path, "Sequences", sequence_ID)
    cut_video_path = os.path.join(sequence_path, 'video.mp4')
    frame_path = os.path.join(sequence_path, 'frames')
    frame_BB_path = os.path.join(sequence_path, 'frames_BB')
    first_BB_path = os.path.join(sequence_path, "initial_BB.txt")
    tracking_results_path = os.path.join(sequence_path, 'results')
    video_BB_path = os.path.join(sequence_path, 'video_BB.mkv')

    # remove previous results
    if (args.overwrite):
        # if os.path.exists(sequence_path) and os.path.isdir(sequence_path):
        #     # shutil.rmtree(sequence_path)
        if os.path.exists(cut_video_path):
            os.remove(cut_video_path)
        if os.path.exists(video_BB_path):
            os.remove(video_BB_path)
        if os.path.exists(frame_path) and os.path.isdir(frame_path):
            shutil.rmtree(frame_path)
        if os.path.exists(frame_BB_path) and os.path.isdir(frame_BB_path):
            shutil.rmtree(frame_BB_path)
        if os.path.exists(tracking_results_path) and os.path.isdir(
                tracking_results_path):
            shutil.rmtree(tracking_results_path)

    print(sequence_ID)
    # Download the video
    download_video(args.YT_ID, full_video_path)

    #Cut the video
    cut_video(full_video_path, cut_video_path, args.start, args.duration)

    #extract frames
    extract_frames(cut_video_path, frame_path)

    first_BB_path_shared = os.path.join(
        "/run/user/1001/gvfs/smb-share:server=10.68.74.21,share=tn2",
        "Sequences", sequence_ID, "initial_BB.txt")

    # draw the first Bounding box
    if not os.path.exists(first_BB_path) and os.path.exists(
            first_BB_path_shared):

        first_BB_path_shared = os.path.join(
            "/run/user/1001/gvfs/smb-share:server=10.68.74.21,share=tn2",
            "Sequences", sequence_ID, "initial_BB.txt")
        # first_BB_path_shared = os.path.join(
        #     "/home/giancos/Documents/Videos", "Sequences", sequence_ID, "initial_BB.txt")

        # if os.path.exists(first_BB_path_shared):
        shutil.copyfile(first_BB_path_shared, first_BB_path)
        # elif: args.just_BB
        # else:
        # print("please Draw!")
        # draw_first_BB(sequence_path, frame_path, first_BB_path, sequence_ID)

    # if args.just_BB:
    #     draw_first_BB(sequence_path, frame_path,
    #                   first_BB_path, sequence_ID)

    # draw BB if asked to
    if args.draw_BB:
        if (not os.path.exists(first_BB_path)):
            os.system(f"xdg-open {cut_video_path}")
            draw_first_BB(sequence_path, frame_path, first_BB_path,
                          sequence_ID)

    if args.run_trackers:
        # if at that stage, no BB, then need to draw one
        if not os.path.exists(first_BB_path):
            draw_first_BB(sequence_path, frame_path, first_BB_path,
                          sequence_ID)

        # Run trackers bsed on pysot
        run_tracker_pysot(args.YT_ID, args.ID, args.path,
                          tracking_results_path, args.overwrite)

        # Run trackers bsed on pytracking
        run_tracker_pytracking(frame_path, sequence_path,
                               tracking_results_path, sequence_ID,
                               args.overwrite)

        # show result bounding boxes
        result_BB(tracking_results_path, frame_path, frame_BB_path,
                  sequence_ID, args.YT_ID, args.overwrite)

    if args.play_video:
        # create results on video
        result_video(frame_BB_path, video_BB_path, args.overwrite)

        # run video
        os.system(f"xdg-open {video_BB_path}")
        sleep(args.duration + args.sleep_between_videos)
Esempio n. 7
0
import utils
import torch
import sys, os
from torchvision import transforms
from artnet import ARTNet
from PIL import Image

labels = ['nonporn', 'p**n']
assert len(sys.argv) == 3, 'Insufficient number of argument'

v = utils.extract_frames(sys.argv[2], 'samples')
transform = transforms.Compose([
    transforms.Resize((112, 112)),
    transforms.RandomCrop((112, 112)),
    transforms.ToTensor(),
    transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])

frames = [Image.open(os.path.join(v, f)) for f in os.listdir(v)]
frames = [transform(f) for f in frames]
tensors = []
for i in range(0, len(frames), 16):
    tensors.append(torch.stack(frames[i:i + 16]))

model = ARTNet()
model.load_state_dict(torch.load(sys.argv[1]))
model = model.to('cuda')

for tensor in tensors:
    tensor = tensor.to('cuda')
    tensor = tensor.unsqueeze(0)
Esempio n. 8
0
else:
    categories = models.load_categories('category_momentsv2.txt')

# Load the video frame transform
transform = models.load_transform()

# Obtain video frames
if args.frame_folder is not None:
    print('Loading frames in {}'.format(args.frame_folder))
    import glob
    # here make sure after sorting the frame paths have the correct temporal order
    frame_paths = sorted(glob.glob(os.path.join(args.frame_folder, '*.jpg')))
    frames = load_frames(frame_paths)
else:
    print('Extracting frames using ffmpeg...')
    frames = extract_frames(args.video_file, args.num_segments)

# Prepare input tensor
if 'resnet3d50' in args.arch:
    # [1, num_frames, 3, 224, 224]
    input = torch.stack([transform(frame) for frame in frames], 1).unsqueeze(0)
else:
    # [num_frames, 3, 224, 224]
    input = torch.stack([transform(frame) for frame in frames])

# Make video prediction
with torch.no_grad():
    logits = model(input)
    h_x = F.softmax(logits, 1).mean(dim=0)
    probs, idx = h_x.sort(0, True)
Esempio n. 9
0
# Get dataset categories
categories = models.load_categories()

# Load the video frame transform
transform = models.load_transform()

# Obtain video frames
if args.frame_folder is not None:
    print('Loading frames in {}'.format(args.frame_folder))
    import glob
    # here make sure after sorting the frame paths have the correct temporal order
    frame_paths = sorted(glob.glob(os.path.join(args.frame_folder, '*.jpg')))
    frames = load_frames(frame_paths)
else:
    print('Extracting frames using ffmpeg...')
    frames = extract_frames(args.video_file, args.num_segments,
                            args.start_frame, args.subsample_rate)

# Prepare input tensor
if args.arch == 'resnet3d50':
    # [1, num_frames, 3, 224, 224]
    input = torch.stack([transform(frame) for frame in frames], 1).unsqueeze(0)
else:
    # [num_frames, 3, 224, 224]
    input = torch.stack([transform(frame) for frame in frames])

# Make video prediction
with torch.no_grad():
    logits = model(input)
    h_x = F.softmax(logits, 1).mean(dim=0)
    probs, idx = h_x.sort(0, True)
Esempio n. 10
0
#categories = models.load_categories()

# Load the video frame transform
transform = models.load_transform()

# Obtain video frames
if args.frame_folder is not None:
    print('Loading frames in {}'.format(args.frame_folder))
    import glob
    # here make sure after sorting the frame paths have the correct temporal order
    frame_paths = sorted(glob.glob(os.path.join(args.frame_folder, '*.jpg')))
    print(frame_paths)
    frames = load_frames(frame_paths)
else:
    print('Extracting frames using ffmpeg...')
    frames = extract_frames(name, args.num_segments)

# Prepare input tensor
if args.arch == 'resnet3d50':
    # [1, num_frames, 3, 224, 224]
    input = torch.stack([transform(frame) for frame in frames], 1).unsqueeze(0)
else:
    # [num_frames, 3, 224, 224]
    input = torch.stack([transform(frame) for frame in frames])

# Make video prediction
with torch.no_grad():
    logits = model(input)
    h_x = F.softmax(logits, 1).mean(dim=0)
    probs, idx = h_x.sort(0, True)
Esempio n. 11
0
def load_video(video_hash):
    yt = YouTube('https://youtube.com/embed/%s?start=%d&end=%d' %
                 (video_hash, start, end))
    video = yt.streams.all()[0]
    name = video.download('/tmp')
    #   Load model
    model = models.load_model(arch)

    av_categories = pd.read_csv('CVS_Actions(NEW).csv',
                                delimiter=';').values.tolist()
    trax = pd.read_csv('audioTracks_urls.csv')

    # Get dataset categories
    #categories = models.load_categories()

    # Load the video frame transform
    transform = models.load_transform()

    # Obtain video frames
    if frame_folder is not None:
        print('Loading frames in {}'.format(frame_folder))
        import glob
        # here make sure after sorting the frame paths have the correct temporal order
        frame_paths = sorted(glob.glob(os.path.join(frame_folder, '*.jpg')))
        print(frame_paths)
        frames = load_frames(frame_paths)
    else:
        print('Extracting frames using ffmpeg...')
        frames = extract_frames(name, num_segments)

    # Prepare input tensor
    if arch == 'resnet3d50':
        # [1, num_frames, 3, 224, 224]
        input = torch.stack([transform(frame) for frame in frames],
                            1).unsqueeze(0)
    else:
        # [num_frames, 3, 224, 224]
        input = torch.stack([transform(frame) for frame in frames])

    # Make video prediction
    with torch.no_grad():
        logits = model(input)
        h_x = F.softmax(logits, 1).mean(dim=0)
        probs, idx = h_x.sort(0, True)

    # Output the prediction.

    print('RESULT ON ' + name)
    y = float(av_categories[idx[0]][1]) * 125
    x = float(av_categories[idx[0]][2]) * 125

    trax = trax.assign(
        dist=lambda row: np.sqrt((x - row.valence)**2 + (y - row.energy)**2))
    print('min', trax['dist'].min())

    best = trax.nsmallest(100, 'dist')
    print(best)

    rand = randint(0, 9)
    print(rand)
    choice = best.iloc[rand, [1, 2, 5]]

    print('choice', choice)

    song = 'valence: ' + str(x) + ' arousal: ' + str(
        y) + " " + choice[0] + ' ' + choice[1]
    print(song)
    print(x, y)
    for i in range(0, 5):
        print('{:.3f} -> {} ->{}'.format(probs[i], idx[i],
                                         av_categories[idx[i]]))
        print('result   cutegories', av_categories[idx[i]][0],
              av_categories[idx[i]][1])

    #r = requests.get(match.iloc[0,2], allow_redirects=True)
    r = requests.get(choice[2], allow_redirects=True)
    open('./tmp/preview.mp3', 'wb').write(r.content)
    # Render output frames with prediction text.
    rendered_output = './tmp/' + video_hash + '_' + str(x) + '_' + str(
        y) + '.mp4'
    if rendered_output is not None:
        clip = VideoFileClip(name).subclip(30, 60)
        audioclip = AudioFileClip('./tmp/preview.mp3')
        txt_clip = TextClip(song, fontsize=16, color='white')
        clip_final = clip.set_audio(audioclip)
        video = CompositeVideoClip([clip_final, txt_clip])
        video.set_duration(30).write_videofile(rendered_output)
Esempio n. 12
0
from utils import make_video_from_frames, extract_frames
from inference import Infer
from datetime import datetime
import os
import segmentation_models_pytorch as smp

input_file = "ufc234_gastelum_bisping_1080p_nosound_cut.mp4"
output_file = "test.mp4"
intermediate_dir = "video_frames"
intermediate_dir2 = "video_frames_processed"
print("Frame extraction")
now = datetime.now()
extract_frames(input_file, intermediate_dir)
print(datetime.now() - now)
print("Inference")
num_batches = 70
model = smp.Unet("se_resnext50_32x4d")
model.cuda()
for i in range(0, num_batches):
    inferer1 = Infer(
        rez_dir=intermediate_dir2,
        image_folder=intermediate_dir,
        batch_size=2,
        num_batches=num_batches,
        batch_id=i,
        threshold=0.5,
    )
    inferer1.inference(model)
print(datetime.now() - now)
print("Making video")
make_video_from_frames(frame_dir=os.path.join(intermediate_dir2, "mask"),