def resnet(depth, width, num_classes, stu_depth=0):
    assert (depth - 4) % 6 == 0, 'depth should be 6n+4'
    n = (depth - 4) // 6
    if stu_depth != 0:
        assert (stu_depth - 4) % 6 == 0, 'student depth should be 6n+4'
        n_s = (stu_depth - 4) // 6
    else:
        n_s = 0

    widths = torch.Tensor([16, 32, 64]).mul(width).int()

    def gen_block_params(ni, no):
        return {
            'conv0': conv_params(ni, no, 3),
            'conv1': conv_params(no, no, 3),
            'bn0': bnparams(ni),
            'bn1': bnparams(no),
            'bns0': bnparams(ni),
            'bns1': bnparams(no),
            'convdim': conv_params(ni, no, 1) if ni != no else None,
        }

    def gen_group_params(ni, no, count):
        return {
            'block%d' % i: gen_block_params(ni if i == 0 else no, no)
            for i in range(count)
        }

    def gen_group_stats(ni, no, count):
        return {
            'block%d' % i: {
                'bn0': bnstats(ni if i == 0 else no),
                'bn1': bnstats(no),
                'bns0': bnstats(ni if i == 0 else no),
                'bns1': bnstats(no)
            }
            for i in range(count)
        }

    if stu_depth != 0 and not opt.param_share:
        params = {
            'conv0': conv_params(3, 16, 3),
            'group0': gen_group_params(16, widths[0], n),
            'group1': gen_group_params(widths[0], widths[1], n),
            'group2': gen_group_params(widths[1], widths[2], n),
            'groups0': gen_group_params(16, widths[0], n_s),
            'groups1': gen_group_params(widths[0], widths[1], n_s),
            'groups2': gen_group_params(widths[1], widths[2], n_s),
            'bn': bnparams(widths[2]),
            'bns': bnparams(widths[2]),
            'fc': linear_params(widths[2], num_classes),
            'fcs': linear_params(widths[2], num_classes),
        }

        stats = {
            'group0': gen_group_stats(16, widths[0], n),
            'group1': gen_group_stats(widths[0], widths[1], n),
            'group2': gen_group_stats(widths[1], widths[2], n),
            'groups0': gen_group_stats(16, widths[0], n_s),
            'groups1': gen_group_stats(widths[0], widths[1], n_s),
            'groups2': gen_group_stats(widths[1], widths[2], n_s),
            'bn': bnstats(widths[2]),
            'bns': bnstats(widths[2]),
        }
    else:
        params = {
            'conv0': conv_params(3, 16, 3),
            'group0': gen_group_params(16, widths[0], n),
            'group1': gen_group_params(widths[0], widths[1], n),
            'group2': gen_group_params(widths[1], widths[2], n),
            'bn': bnparams(widths[2]),
            'bns': bnparams(widths[2]),
            'fc': linear_params(widths[2], num_classes),
            'fcs': linear_params(widths[2], num_classes),
        }

        stats = {
            'group0': gen_group_stats(16, widths[0], n),
            'group1': gen_group_stats(widths[0], widths[1], n),
            'group2': gen_group_stats(widths[1], widths[2], n),
            'bn': bnstats(widths[2]),
            'bns': bnstats(widths[2]),
        }

    flat_params = flatten_params(params)
    flat_stats = flatten_stats(stats)

    def block(x, params, stats, base, mode, stride, flag, drop_switch=True):
        if flag == 's':
            o1 = F.relu(batch_norm(x, params, stats, base + '.bns0', mode))
            y = F.conv2d(o1, params[base + '.conv0'], stride=stride, padding=1)
            o2 = F.relu(batch_norm(y, params, stats, base + '.bns1', mode))
            z = F.conv2d(o2, params[base + '.conv1'], stride=1, padding=1)
            if base + '.convdim' in params:
                return z + F.conv2d(
                    o1, params[base + '.convdim'], stride=stride)
            else:
                return z + x
        o1 = F.relu(batch_norm(x, params, stats, base + '.bn0', mode))
        y = F.conv2d(o1, params[base + '.conv0'], stride=stride, padding=1)
        o2 = F.relu(batch_norm(y, params, stats, base + '.bn1', mode))
        if opt.dropout > 0 and drop_switch:
            o2 = F.dropout(o2, p=opt.dropout, training=mode)
        z = F.conv2d(o2, params[base + '.conv1'], stride=1, padding=1)
        if base + '.convdim' in params:
            return z + F.conv2d(o1, params[base + '.convdim'], stride=stride)
        else:
            return z + x

    def group(o, params, stats, base, mode, stride):
        for i in range(n):
            o = block(o, params, stats, '%s.block%d' % (base, i), mode,
                      stride if i == 0 else 1, 't', False)
        return o

    def group_student(o, params, stats, base, mode, stride, n_layer):
        for i in range(n_layer):
            o = block(o, params, stats, '%s.block%d' % (base, i), mode,
                      stride if i == 0 else 1, 's', False)
        return o

    def f(input, params, stats, mode, prefix=''):
        x = F.conv2d(input, params[prefix + 'conv0'], padding=1)
        g0 = group(x, params, stats, prefix + 'group0', mode, 1)
        g1 = group(g0, params, stats, prefix + 'group1', mode, 2)
        g2 = group(g1, params, stats, prefix + 'group2', mode, 2)
        o = F.relu(batch_norm(g2, params, stats, prefix + 'bn', mode))
        o = F.avg_pool2d(o, 8, 1, 0)
        o = o.view(o.size(0), -1)
        o = F.linear(o, params[prefix + 'fc.weight'],
                     params[prefix + 'fc.bias'])
        #x_s = F.conv2d(input, params[prefix+'conv0_s'], padding=1)
        if stu_depth != 0:
            if opt.param_share:
                gs0 = group_student(x, params, stats, prefix + 'group0', mode,
                                    1, n_s)
                gs1 = group_student(gs0, params, stats, prefix + 'group1',
                                    mode, 2, n_s)
                gs2 = group_student(gs1, params, stats, prefix + 'group2',
                                    mode, 2, n_s)
            else:
                gs0 = group_student(x, params, stats, prefix + 'groups0', mode,
                                    1, n_s)
                gs1 = group_student(gs0, params, stats, prefix + 'groups1',
                                    mode, 2, n_s)
                gs2 = group_student(gs1, params, stats, prefix + 'groups2',
                                    mode, 2, n_s)

            os = F.relu(batch_norm(gs2, params, stats, prefix + 'bns', mode))
            os = F.avg_pool2d(os, 8, 1, 0)
            os = os.view(os.size(0), -1)
            os = F.linear(os, params[prefix + 'fcs.weight'],
                          params[prefix + 'fcs.bias'])
            return os, o, [g0, g1, g2, gs0, gs1, gs2]
        else:
            return o, [g0, g1, g2]

    return f, flat_params, flat_stats
Esempio n. 2
0
def resnet(depth, width, num_classes):
    assert (depth - 4) % 6 == 0, 'depth should be 6n+4'
    n = (depth - 4) // 6
    widths = torch.Tensor([16, 32, 64]).mul(width).int()

    def gen_block_params(ni, no):
        return {
            'conv0': conv_params(ni, no, 3),
            'conv1': conv_params(no, no, 3),
            'bn0': bnparams(ni),
            'bn1': bnparams(no),
            'convdim': conv_params(ni, no, 1) if ni != no else None,
        }

    def gen_group_params(ni, no, count):
        return {
            'block%d' % i: gen_block_params(ni if i == 0 else no, no)
            for i in range(count)
        }

    def gen_group_stats(ni, no, count):
        return {
            'block%d' % i: {
                'bn0': bnstats(ni if i == 0 else no),
                'bn1': bnstats(no)
            }
            for i in range(count)
        }

    params = {
        'conv0': conv_params(3, 16, 3),
        'group0': gen_group_params(16, widths[0], n),
        'group1': gen_group_params(widths[0], widths[1], n),
        'group2': gen_group_params(widths[1], widths[2], n),
        'bn': bnparams(widths[2]),
        'fc': linear_params(widths[2], num_classes),
    }

    stats = {
        'group0': gen_group_stats(16, widths[0], n),
        'group1': gen_group_stats(widths[0], widths[1], n),
        'group2': gen_group_stats(widths[1], widths[2], n),
        'bn': bnstats(widths[2]),
    }

    flat_params = flatten_params(params)
    flat_stats = flatten_stats(stats)

    def activation(x, params, stats, base, mode):
        return F.relu(F.batch_norm(x,
                                   weight=params[base + '.weight'],
                                   bias=params[base + '.bias'],
                                   running_mean=stats[base + '.running_mean'],
                                   running_var=stats[base + '.running_var'],
                                   training=mode,
                                   momentum=0.1,
                                   eps=1e-5),
                      inplace=True)

    def block(x, params, stats, base, mode, stride):
        o1 = activation(x, params, stats, base + '.bn0', mode)
        y = F.conv2d(o1, params[base + '.conv0'], stride=stride, padding=1)
        o2 = activation(y, params, stats, base + '.bn1', mode)
        z = F.conv2d(o2, params[base + '.conv1'], stride=1, padding=1)
        if base + '.convdim' in params:
            return z + F.conv2d(o1, params[base + '.convdim'], stride=stride)
        else:
            return z + x

    def group(o, params, stats, base, mode, stride):
        for i in range(n):
            o = block(o, params, stats, '%s.block%d' % (base, i), mode,
                      stride if i == 0 else 1)
        return o

    def f(input, params, stats, mode):
        assert input.get_device() == params['conv0'].get_device()
        x = F.conv2d(input, params['conv0'], padding=1)
        g0 = group(x, params, stats, 'group0', mode, 1)
        g1 = group(g0, params, stats, 'group1', mode, 2)
        g2 = group(g1, params, stats, 'group2', mode, 2)
        o = activation(g2, params, stats, 'bn', mode)
        o = F.avg_pool2d(o, 8, 1, 0)
        o = o.view(o.size(0), -1)
        o = F.linear(o, params['fc.weight'], params['fc.bias'])
        return o

    return f, flat_params, flat_stats
Esempio n. 3
0
def resnet(depth, width, num_classes):
    assert (depth - 4) % 6 == 0, 'depth should be 6n+4'
    n = (depth - 4) // 6
    widths = [int(x * width) for x in [16, 32, 64]]

    def gen_block_params(ni, no):
        return {
            'conv0': conv_params(ni, no, 3),
            'conv1': conv_params(no, no, 3),
            'bn0': bnparams(ni),
            'bn1': bnparams(no),
            'convdim': conv_params(ni, no, 1) if ni != no else None,
        }

    def gen_group_params(ni, no, count):
        return {'block%d' % i: gen_block_params(ni if i == 0 else no, no)
                for i in range(count)}

    def gen_group_stats(ni, no, count):
        return {'block%d' % i: {'bn0': bnstats(ni if i == 0 else no), 'bn1': bnstats(no)}
                for i in range(count)}

    flat_params = flatten_params({
        'conv0': conv_params(3,16,3),
        'group0': gen_group_params(16, widths[0], n),
        'group1': gen_group_params(widths[0], widths[1], n),
        'group2': gen_group_params(widths[1], widths[2], n),
        'bn': bnparams(widths[2]),
        'fc': linear_params(widths[2], num_classes),
    })

    flat_stats = flatten_stats({
        'group0': gen_group_stats(16, widths[0], n),
        'group1': gen_group_stats(widths[0], widths[1], n),
        'group2': gen_group_stats(widths[1], widths[2], n),
        'bn': bnstats(widths[2]),
    })

    def block(x, params, stats, base, mode, stride):
        o1 = F.relu(batch_norm(x, params, stats, base + '.bn0', mode), inplace=True)
        y = F.conv2d(o1, params[base + '.conv0'], stride=stride, padding=1)
        o2 = F.relu(batch_norm(y, params, stats, base + '.bn1', mode), inplace=True)
        z = F.conv2d(o2, params[base + '.conv1'], stride=1, padding=1)
        if base + '.convdim' in params:
            return z + F.conv2d(o1, params[base + '.convdim'], stride=stride)
        else:
            return z + x

    def group(o, params, stats, base, mode, stride):
        for i in range(n):
            o = block(o, params, stats, '%s.block%d' % (base,i), mode, stride if i == 0 else 1)
        return o

    def f(input, params, stats, mode):
        x = F.conv2d(input, params['conv0'], padding=1)
        g0 = group(x, params, stats, 'group0', mode, 1)
        g1 = group(g0, params, stats, 'group1', mode, 2)
        g2 = group(g1, params, stats, 'group2', mode, 2)
        o = F.relu(batch_norm(g2, params, stats, 'bn', mode))
        o = F.avg_pool2d(o, 8, 1, 0)
        o = o.view(o.size(0), -1)
        o = F.linear(o, params['fc.weight'], params['fc.bias'])
        return o

    return f, flat_params, flat_stats
def resnet(depth, width, num_classes,activation):
    assert (depth - 4) % 6 == 0, 'depth should be 6n+4'
    n = (depth - 4) // 6
    widths = torch.Tensor([16, 32, 64]).mul(width).int()
    actfun=None
    if activation=='swish':
        actfun=swish
    elif activation=='new':
        actfun=new
    elif activation=='elu':
        actfun=F.elu
    elif activation=='tanh':
        actfun=F.tanh
    elif activation=='lrelu':
        actfun=F.leaky_relu
    elif activation=='relu':
        actfun=F.relu

    def gen_block_params(ni, no):
        return {
            'conv0': conv_params(ni, no, 3),
            'conv1': conv_params(no, no, 3),
            'bn0': bnparams(ni),
            'bn1': bnparams(no),
            'convdim': conv_params(ni, no, 1) if ni != no else None,
        }

    def gen_group_params(ni, no, count):
        return {'block%d' % i: gen_block_params(ni if i == 0 else no, no)
                for i in range(count)}

    def gen_group_stats(ni, no, count):
        return {'block%d' % i: {'bn0': bnstats(ni if i == 0 else no), 'bn1': bnstats(no)}
                for i in range(count)}

    flat_params = flatten_params({
        'conv0': conv_params(3,16,3),
        'group0': gen_group_params(16, widths[0], n),
        'group1': gen_group_params(widths[0], widths[1], n),
        'group2': gen_group_params(widths[1], widths[2], n),
        'bn': bnparams(widths[2]),
        'fc': linear_params(widths[2], num_classes),
    })

    flat_stats = flatten_stats({
        'group0': gen_group_stats(16, widths[0], n),
        'group1': gen_group_stats(widths[0], widths[1], n),
        'group2': gen_group_stats(widths[1], widths[2], n),
        'bn': bnstats(widths[2]),
    })

    def block(x, params, stats, base, mode, stride):
        o1 = actfun(batch_norm(x, params, stats, base + '.bn0', mode),0.2)
        y = F.conv2d(o1, params[base + '.conv0'], stride=stride, padding=1)
        o2 = actfun(batch_norm(y, params, stats, base + '.bn1', mode),0.2)
        z = F.conv2d(o2, params[base + '.conv1'], stride=1, padding=1)
        if base + '.convdim' in params:
            return z + F.conv2d(o1, params[base + '.convdim'], stride=stride)
        else:
            return z + x

    def group(o, params, stats, base, mode, stride):
        for i in range(n):
            o = block(o, params, stats, '%s.block%d' % (base,i), mode, stride if i == 0 else 1)
        return o

    def f(input, params, stats, mode):
        x = F.conv2d(input, params['conv0'], padding=1)
        g0 = group(x, params, stats, 'group0', mode, 1)
        g1 = group(g0, params, stats, 'group1', mode, 2)
        g2 = group(g1, params, stats, 'group2', mode, 2)
        o = actfun(batch_norm(g2, params, stats, 'bn', mode),0.2)
        o = F.avg_pool2d(o, 8, 1, 0)
        o = o.view(o.size(0), -1)
        o = F.linear(o, params['fc.weight'], params['fc.bias'])
        return o

    return f, flat_params, flat_stats
Esempio n. 5
0
def resnet(depth, width, num_classes):
    assert (depth - 4) % 6 == 0, 'depth should be 6n+4'
    n = (depth - 4) // 6
    widths = torch.Tensor([16, 32, 64]).mul(width).int().numpy().tolist()

    def gen_block_params(ni, no, scalar):
        if scalar:
            return {
                'bn0': bnparams(ni),
                'bn1': bnparams(no),
            }
        return {
            'conv0': conv_params(ni, no, 3),
            'conv1': conv_params(no, no, 3),
            'convdim': conv_params(ni, no, 1) if ni != no else None,
        }

    def gen_group_params(ni, no, count, bias=False):
        return {
            'block%d' % i: gen_block_params(ni if i == 0 else no, no, bias)
            for i in range(count)
        }

    def gen_group_stats(ni, no, count):
        return {
            'block%d' % i: {
                'bn0': bnstats(ni if i == 0 else no),
                'bn1': bnstats(no)
            }
            for i in range(count)
        }

    flat_vectors = flatten_params({
        'conv0':
        conv_params(3, 16, 3),
        'group0':
        gen_group_params(16, widths[0], n),
        'group1':
        gen_group_params(widths[0], widths[1], n),
        'group2':
        gen_group_params(widths[1], widths[2], n),
        'conv1':
        conv_params(widths[2], num_classes, 1),
    })

    flat_scalars = flatten_params({
        'group0':
        gen_group_params(16, widths[0], n, True),
        'group1':
        gen_group_params(widths[0], widths[1], n, True),
        'group2':
        gen_group_params(widths[1], widths[2], n, True),
        'bn':
        bnparams(widths[2]),
    })

    flat_stats = flatten_stats({
        'group0':
        gen_group_stats(16, widths[0], n),
        'group1':
        gen_group_stats(widths[0], widths[1], n),
        'group2':
        gen_group_stats(widths[1], widths[2], n),
        'bn':
        bnstats(widths[2]),
    })

    def block(x, params, stats, base, mode, stride):
        o1 = F.relu(batch_norm(x, params, stats, base + '.bn0', mode, 1.),
                    inplace=True)
        y = F.conv2d(o1, params[base + '.conv0'], stride=stride, padding=1)
        o2 = F.relu(batch_norm(y, params, stats, base + '.bn1', mode, 1.),
                    inplace=True)
        z = F.conv2d(o2, params[base + '.conv1'], stride=1, padding=1)
        if base + '.convdim' in params:
            return z + F.conv2d(o1, params[base + '.convdim'], stride=stride)
        else:
            return z + x

    def group(o, params, stats, base, mode, stride):
        for i in range(n):
            o = block(o, params, stats, '%s.block%d' % (base, i), mode,
                      stride if i == 0 else 1)
        return o

    def f(input, params, stats, mode):
        x = F.conv2d(input, params['conv0'], padding=1)
        g0 = group(x, params, stats, 'group0', mode, 1)
        g1 = group(g0, params, stats, 'group1', mode, 2)
        g2 = group(g1, params, stats, 'group2', mode, 2)
        o = F.relu(batch_norm(g2, params, stats, 'bn', mode, 1.))
        o = F.conv2d(o, params['conv1'])
        o = F.avg_pool2d(o, 8, 1, 0)
        o = o.view(o.size(0), -1)
        return o

    return f, flat_vectors, flat_scalars, flat_stats
Esempio n. 6
0
def resnet(depth, width, num_classes):
    assert (depth - 4) % 6 == 0, 'depth should be 6n+4'
    n = (depth - 4) // 6
    widths = torch.Tensor([16, 32, 64]).mul(width).int()

    def gen_block_params(ni, no):
        return {
            'conv0': conv_params(ni, no, 3),
            'conv1': conv_params(no, no, 3),
            'bn0': bnparams(ni),
            'bn1': bnparams(no),
            'convdim': conv_params(ni, no, 1) if ni != no else None,
        }

    def gen_group_params(ni, no, count):
        return {'block%d' % i: gen_block_params(ni if i == 0 else no, no)
                for i in range(count)}

    def gen_group_stats(ni, no, count):
        return {'block%d' % i: {'bn0': bnstats(ni if i == 0 else no), 'bn1': bnstats(no)}
                for i in range(count)}

    flat_params = flatten_params({
        'conv0': conv_params(3,16,3),
        'group0': gen_group_params(16, widths[0], n),
        'group1': gen_group_params(widths[0], widths[1], n),
        'group2': gen_group_params(widths[1], widths[2], n),
        'bn': bnparams(widths[2]),
        'fc': linear_params(widths[2], num_classes),
    })

    flat_stats = flatten_stats({
        'group0': gen_group_stats(16, widths[0], n),
        'group1': gen_group_stats(widths[0], widths[1], n),
        'group2': gen_group_stats(widths[1], widths[2], n),
        'bn': bnstats(widths[2]),
    })

    def block(x, params, stats, base, mode, stride):
        o1 = F.relu(batch_norm(x, params, stats, base + '.bn0', mode), inplace=True)
        y = F.conv2d(o1, params[base + '.conv0'], stride=stride, padding=1)
        o2 = F.relu(batch_norm(y, params, stats, base + '.bn1', mode), inplace=True)
        z = F.conv2d(o2, params[base + '.conv1'], stride=1, padding=1)
        if base + '.convdim' in params:
            return z + F.conv2d(o1, params[base + '.convdim'], stride=stride)
        else:
            return z + x

    def group(o, params, stats, base, mode, stride):
        for i in range(n):
            o = block(o, params, stats, '%s.block%d' % (base,i), mode, stride if i == 0 else 1)
        return o

    def f(input, params, stats, mode):
        x = F.conv2d(input, params['conv0'], padding=1)
        g0 = group(x, params, stats, 'group0', mode, 1)
        g1 = group(g0, params, stats, 'group1', mode, 2)
        g2 = group(g1, params, stats, 'group2', mode, 2)
        o = F.relu(batch_norm(g2, params, stats, 'bn', mode))
        o = F.avg_pool2d(o, 8, 1, 0)
        o = o.view(o.size(0), -1)
        o = F.linear(o, params['fc.weight'], params['fc.bias'])
        return o

    return f, flat_params, flat_stats
Esempio n. 7
0
    def __init__(self,
                 depth,
                 width,
                 ninputs=3,
                 num_groups=3,
                 num_classes=None,
                 dropout=0.):

        super(WideResNet, self).__init__()
        self.depth = depth
        self.width = width
        self.num_groups = num_groups
        self.num_classes = num_classes
        self.dropout = dropout
        self.mode = True  # Training

        #widths = torch.Tensor([16, 32, 64]).mul(width).int()
        widths = np.array([16, 32, 64]).astype(np.int) * width

        def gen_block_params(ni, no):
            return {
                'conv0': conv_params(ni, no, 3),
                'conv1': conv_params(no, no, 3),
                'bn0': bnparams(ni),
                'bn1': bnparams(no),
                'convdim': conv_params(ni, no, 1) if ni != no else None,
            }

        def gen_group_params(ni, no, count):
            return {
                'block%d' % i: gen_block_params(ni if i == 0 else no, no)
                for i in range(count)
            }

        def gen_group_stats(ni, no, count):
            return {
                'block%d' % i: {
                    'bn0': bnstats(ni if i == 0 else no),
                    'bn1': bnstats(no)
                }
                for i in range(count)
            }

        params = {'conv0': conv_params(ni=ninputs, no=widths[0], k=3)}
        stats = {}

        for i in range(num_groups + 1):
            if i == 0:
                params.update({
                    'group' + str(i):
                    gen_group_params(widths[i], widths[i], depth)
                })
                stats.update({
                    'group' + str(i):
                    gen_group_stats(widths[i], widths[i], depth)
                })
            else:
                params.update({
                    'group' + str(i):
                    gen_group_params(widths[i - 1], widths[i], depth)
                })
                stats.update({
                    'group' + str(i):
                    gen_group_stats(widths[i - 1], widths[i], depth)
                })

        if num_classes is not None:
            params.update({'fc': linear_params(widths[i], num_classes)})
        params.update({'bn': bnparams(widths[i])})
        stats.update({'bn': bnstats(widths[i])})

        params = flatten_params(params)
        stats = flatten_stats(stats)

        self.params = nn.ParameterDict({})
        self.stats = nn.ParameterDict({})
        for key in params.keys():
            self.params.update(
                {key: nn.Parameter(params[key], requires_grad=True)})
        for key in stats.keys():
            self.stats.update(
                {key: nn.Parameter(stats[key], requires_grad=False)})
Esempio n. 8
0
def resnet(depth,
           width,
           num_classes,
           is_full_wrn=True,
           is_fully_convolutional=False):
    #assert (depth - 4) % 6 == 0, 'depth should be 6n+4'
    #n = (depth - 4) // 6
    #wrn = WideResNet(depth, width, ninputs=3,useCuda=True, num_groups=3, num_classes=num_classes)
    n = depth
    widths = torch.Tensor([16, 32, 64]).mul(width).int()

    def gen_block_params(ni, no):
        return {
            'conv0': conv_params(ni, no, 3),
            'conv1': conv_params(no, no, 3),
            'bn0': bnparams(ni),
            'bn1': bnparams(no),
            'convdim': conv_params(ni, no, 1) if ni != no else None,
        }

    def gen_group_params(ni, no, count):
        return {
            'block%d' % i: gen_block_params(ni if i == 0 else no, no)
            for i in range(count)
        }

    def gen_group_stats(ni, no, count):
        return {
            'block%d' % i: {
                'bn0': bnstats(ni if i == 0 else no),
                'bn1': bnstats(no)
            }
            for i in range(count)
        }

    params = {
        'conv0': conv_params(3, 16, 3),
        'group0': gen_group_params(16, widths[0], n),
        'group1': gen_group_params(widths[0], widths[1], n),
        'group2': gen_group_params(widths[1], widths[2], n),
        'bn': bnparams(widths[2]),
        'fc': linear_params(widths[2], num_classes),
    }

    stats = {
        'group0': gen_group_stats(16, widths[0], n),
        'group1': gen_group_stats(widths[0], widths[1], n),
        'group2': gen_group_stats(widths[1], widths[2], n),
        'bn': bnstats(widths[2]),
    }
    if not is_full_wrn:
        ''' omniglot '''
        params['bn'] = bnparams(widths[1])
        #params['fc'] = linear_params(widths[1]*16*16, num_classes)
        params['fc'] = linear_params(widths[1], num_classes)
        stats['bn'] = bnstats(widths[1])
        '''
        # banknote
        params['bn'] = bnparams(widths[2])
        #params['fc'] = linear_params(widths[2]*16*16, num_classes)
        params['fc'] = linear_params(widths[2], num_classes)
        stats['bn'] = bnstats(widths[2])
        '''

    flat_params = flatten_params(params)
    flat_stats = flatten_stats(stats)

    def activation(x, params, stats, base, mode):
        return F.relu(F.batch_norm(x,
                                   weight=params[base + '.weight'],
                                   bias=params[base + '.bias'],
                                   running_mean=stats[base + '.running_mean'],
                                   running_var=stats[base + '.running_var'],
                                   training=mode,
                                   momentum=0.1,
                                   eps=1e-5),
                      inplace=True)

    def block(x, params, stats, base, mode, stride):
        o1 = activation(x, params, stats, base + '.bn0', mode)
        y = F.conv2d(o1, params[base + '.conv0'], stride=stride, padding=1)
        o2 = activation(y, params, stats, base + '.bn1', mode)
        z = F.conv2d(o2, params[base + '.conv1'], stride=1, padding=1)
        if base + '.convdim' in params:
            return z + F.conv2d(o1, params[base + '.convdim'], stride=stride)
        else:
            return z + x

    def group(o, params, stats, base, mode, stride):
        for i in range(n):
            o = block(o, params, stats, '%s.block%d' % (base, i), mode,
                      stride if i == 0 else 1)
        return o

    def full_wrn(input, params, stats, mode):
        assert input.get_device() == params['conv0'].get_device()
        x = F.conv2d(input, params['conv0'], padding=1)
        g0 = group(x, params, stats, 'group0', mode, 1)
        g1 = group(g0, params, stats, 'group1', mode, 2)
        g2 = group(g1, params, stats, 'group2', mode, 2)
        o = activation(g2, params, stats, 'bn', mode)
        o = F.avg_pool2d(o, o.shape[2], 1, 0)
        o = o.view(o.size(0), -1)
        o = F.linear(o, params['fc.weight'], params['fc.bias'])
        return o

    def not_full_wrn(input, params, stats, mode):
        assert input.get_device() == params['conv0'].get_device()
        x = F.conv2d(input, params['conv0'], padding=1)
        g0 = group(x, params, stats, 'group0', mode, 1)
        g1 = group(g0, params, stats, 'group1', mode, 2)
        # omniglot
        o = activation(g1, params, stats, 'bn', mode)
        o = F.avg_pool2d(o, o.shape[2], 1, 0)
        # banknote
        '''
        g2 = group(g1, params, stats, 'group2', mode, 2)
        o = activation(g2, params, stats, 'bn', mode)
        o = F.avg_pool2d(o, 16, 1, 0)
        '''
        o = o.view(o.size(0), -1)
        o = F.linear(o, params['fc.weight'], params['fc.bias'])
        return o

    def fcn_full_wrn(input, params, stats, mode):
        assert input.get_device() == params['conv0'].get_device()
        x = F.conv2d(input, params['conv0'], padding=1)
        g0 = group(x, params, stats, 'group0', mode, 1)
        g1 = group(g0, params, stats, 'group1', mode, 2)
        g2 = group(g1, params, stats, 'group2', mode, 2)
        o = activation(g2, params, stats, 'bn', mode)
        return o

    def fcn_not_full_wrn(input, params, stats, mode):
        assert input.get_device() == params['conv0'].get_device()
        x = F.conv2d(input, params['conv0'], padding=1)
        g0 = group(x, params, stats, 'group0', mode, 1)
        g1 = group(g0, params, stats, 'group1', mode, 2)
        o = activation(g1, params, stats, 'bn', mode)
        return o

    if is_fully_convolutional:
        if is_full_wrn:
            return fcn_full_wrn, flat_params, flat_stats
        else:
            return fcn_not_full_wrn, flat_params, flat_stats
    else:
        if is_full_wrn:
            return full_wrn, flat_params, flat_stats
        else:
            return not_full_wrn, flat_params, flat_stats
def vgg(depth, width, num_classes):
    assert depth in [11, 13, 16, 19]
    depth_str = str(int(depth))
    _cfg = cfg[depth_str]

    def gen_feature_params():
        in_channels = 3
        dic = {}
        for i in range(len(_cfg)):
            if not _cfg[i] == 'M':
                dic['conv{0}'.format(i)] = conv_params(in_channels, _cfg[i], 3)
                dic['bn{0}'.format(i)] = bnparams(_cfg[i])
                in_channels = _cfg[i]

        return dic

    def gen_feature_stats():
        dic = {}
        for i in range(len(_cfg)):
            if not _cfg[i] == 'M':
                dic['bn{0}'.format(i)] = bnstats(_cfg[i])
        return dic

    def gen_classifier_params():
        return {
            'fc1': linear_params(512, 4096),
            'fc2': linear_params(4096, 4096),
            'fc3': linear_params(4096, num_classes),
        }

    def feature(input, params, stats, mode):
        out = input
        for i in range(len(_cfg)):
            if _cfg[i] == 'M':
                out = F.max_pool2d(out, 2, 2, 0)
            else:
                out = F.conv2d(out, params['conv{0}'.format(i)], padding=1)
                out = activation(out, params, stats, 'bn{0}'.format(i), mode)

        return out

    def activation(x, params, stats, base, mode):
        return F.relu(F.batch_norm(x,
                                   weight=params[base + '.weight'],
                                   bias=params[base + '.bias'],
                                   running_mean=stats[base + '.running_mean'],
                                   running_var=stats[base + '.running_var'],
                                   training=mode,
                                   momentum=0.1,
                                   eps=1e-5),
                      inplace=True)

    def classifier(input, params, num_classes, mode):
        out = F.relu(F.linear(input, params['fc1.weight'], params['fc1.bias']),
                     inplace=False)
        #         out = F.dropout(out, p=0.3, training=mode)
        out = F.relu(F.linear(out, params['fc2.weight'], params['fc2.bias']),
                     inplace=False)
        #         out = F.dropout(out, p=0.3, training=mode)
        out = F.linear(out, params['fc3.weight'], params['fc3.bias'])

        return out

    params = {**gen_feature_params(), **gen_classifier_params()}
    stats = gen_feature_stats()

    flat_params = flatten_params(params)
    flat_stats = flatten_stats(stats)

    def f(input, params, stats, mode):
        out = feature(input, params, stats, mode)
        out = out.view(-1, np.prod(out.size()[1:])).contiguous()
        out = classifier(out, params, num_classes, mode)

        return out

    return f, flat_params, flat_stats
Esempio n. 10
0
def define_student(depth, width):
    definitions = {
        18: [2, 2, 2, 2],
        34: [3, 4, 6, 5],
    }
    assert depth in list(definitions.keys())
    widths = np.floor(np.asarray([64, 128, 256, 512]) * width).astype(np.int)
    blocks = definitions[depth]

    def gen_block_params(ni, no):
        return {
            'conv0': conv_params(ni, no, 3),
            'conv1': conv_params(no, no, 3),
            'bn0': bnparams(no),
            'bn1': bnparams(no),
            'convdim': conv_params(ni, no, 1) if ni != no else None,
        }

    def gen_group_params(ni, no, count):
        return {
            'block%d' % i: gen_block_params(ni if i == 0 else no, no)
            for i in range(count)
        }

    def gen_group_stats(no, count):
        return {
            'block%d' % i: {
                'bn0': bnstats(no),
                'bn1': bnstats(no)
            }
            for i in range(count)
        }

    params = {
        'conv0': conv_params(3, 64, 7),
        'bn0': bnparams(64),
        'group0': gen_group_params(64, widths[0], blocks[0]),
        'group1': gen_group_params(widths[0], widths[1], blocks[1]),
        'group2': gen_group_params(widths[1], widths[2], blocks[2]),
        'group3': gen_group_params(widths[2], widths[3], blocks[3]),
        'fc': linear_params(widths[3], 1000),
    }

    stats = {
        'bn0': bnstats(64),
        'group0': gen_group_stats(widths[0], blocks[0]),
        'group1': gen_group_stats(widths[1], blocks[1]),
        'group2': gen_group_stats(widths[2], blocks[2]),
        'group3': gen_group_stats(widths[3], blocks[3]),
    }

    # flatten parameters and additional buffers
    flat_params = flatten_params(params)
    flat_stats = flatten_stats(stats)

    def block(x, params, stats, base, mode, stride):
        y = F.conv2d(x, params[base + '.conv0'], stride=stride, padding=1)
        o1 = F.relu(batch_norm(y, params, stats, base + '.bn0', mode),
                    inplace=True)
        z = F.conv2d(o1, params[base + '.conv1'], stride=1, padding=1)
        o2 = batch_norm(z, params, stats, base + '.bn1', mode)
        if base + '.convdim' in params:
            return F.relu(
                o2 + F.conv2d(x, params[base + '.convdim'], stride=stride),
                inplace=True)
        else:
            return F.relu(o2 + x, inplace=True)

    def group(o, params, stats, base, mode, stride, n):
        for i in range(n):
            o = block(o, params, stats, '%s.block%d' % (base, i), mode,
                      stride if i == 0 else 1)
        return o

    def f(input, params, stats, mode, pr=''):
        o = F.conv2d(input, params[pr + 'conv0'], stride=2, padding=3)
        o = F.relu(batch_norm(o, params, stats, pr + 'bn0', mode),
                   inplace=True)
        o = F.max_pool2d(o, 3, 2, 1)
        g0 = group(o, params, stats, pr + 'group0', mode, 1, blocks[0])
        g1 = group(g0, params, stats, pr + 'group1', mode, 2, blocks[1])
        g2 = group(g1, params, stats, pr + 'group2', mode, 2, blocks[2])
        g3 = group(g2, params, stats, pr + 'group3', mode, 2, blocks[3])
        o = F.avg_pool2d(g3, 7)
        o = o.view(o.size(0), -1)
        o = F.linear(o, params[pr + 'fc.weight'], params[pr + 'fc.bias'])
        return o, [g0, g1, g2, g3]

    return f, flat_params, flat_stats