Esempio n. 1
0
from loader import augment_with_pretrained, calculate_global_maxes
from loader import update_tag_scheme, prepare_dataset
from loader import word_mapping, char_mapping, tag_mapping
# from model import Model
from model_tensorflow import Model
from utils import models_path, evaluate, eval_script, eval_temp
from utils import read_args, form_parameters_dict

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("main")

# Read parameters from command line
opts = read_args()

# Parse parameters
parameters = form_parameters_dict(opts)

# Check parameters validity
assert os.path.isfile(opts.train)
assert os.path.isfile(opts.dev)
assert os.path.isfile(opts.test)
assert parameters['char_dim'] > 0 or parameters['word_dim'] > 0
assert 0. <= parameters['dropout'] < 1.0
assert parameters['t_s'] in ['iob', 'iobes']
assert not parameters['all_emb'] or parameters['pre_emb']
assert not parameters['pre_emb'] or parameters['word_dim'] > 0
assert not parameters['pre_emb'] or os.path.isfile(parameters['pre_emb'])

# Check evaluation script / folders
if not os.path.isfile(eval_script):
    raise Exception('CoNLL evaluation script not found at "%s"' % eval_script)
Esempio n. 2
0
def train_a_single_configuration(
                                              datasets_root,
                                              crf,
                                              lr_method,
                                              batch_size,
                                              sparse_updates_enabled,
                                              dropout,
                                              char_dim,
                                              char_lstm_dim,
                                              morpho_tag_dim,
                                              morpho_tag_lstm_dim,
                                              morpho_tag_type,
                                              morpho_tag_column_index,
                                              word_dim,
                                              word_lstm_dim,
                                              cap_dim, skip_testing, max_epochs,
                                              train_filepath,
                                              dev_filepath,
                                              test_filepath,
                                              yuret_train_filepath,
                                              yuret_test_filepath,
                                              train_with_yuret,
                                              test_with_yuret,
                                              use_golden_morpho_analysis_in_word_representation,
                                              embeddings_filepath,
                                              integration_mode,
                                              active_models,
                                              multilayer,
                                              shortcut_connections,
                                              reload,
                                              dynet_gpu,
                                              _run):

    """
    python train.py --pre_emb ../../data/we-300.txt --train dataset/gungor.ner.train.only_consistent --dev dataset/gungor.ner.dev.only_consistent --test dataset/gungor.ner.test.only_consistent --word_di
m 300  --word_lstm_dim 200 --word_bidirect 1 --cap_dim 100 --crf 1 [email protected] --maximum-epochs 50 --char_dim 200 --char_lstm_dim 200 --char_bid
irect 1 --overwrite-mappings 1 --batch-size 1 --morpho_tag_dim 100 --integration_mode 2
    """

    execution_part = "python main.py --command train --overwrite-mappings 1 "

    if sparse_updates_enabled == 0:
        execution_part += "--disable_sparse_updates "

    if dynet_gpu == 1:
        execution_part += "--dynet-gpu 1 "

    if train_with_yuret == 1:
        execution_part += "--train_with_yuret "

    if use_golden_morpho_analysis_in_word_representation == 1:
        execution_part += "--use_golden_morpho_analysis_in_word_representation "

    if word_dim == 0:
        embeddings_part = ""
    else:
        if embeddings_filepath:
            embeddings_part = "--pre_emb %s/%s " % (datasets_root, embeddings_filepath)
        else:
            embeddings_part = ""

    print (train_filepath, dev_filepath, test_filepath, skip_testing, max_epochs)

    always_constant_part = "-T %s/%s " \
          "-d %s/%s " \
          "-t %s/%s " \
          "%s" \
          "%s" \
          "--yuret_train %s/%s " \
          "--yuret_test %s/%s " \
          "%s" \
          "--skip-testing %d " \
          "--tag_scheme iobes " \
          "--maximum-epochs %d " % (datasets_root, train_filepath,
                                    datasets_root, dev_filepath,
                                    datasets_root, test_filepath,
                                    "--train_with_yuret " if train_with_yuret else "",
                                    "--test_with_yuret " if test_with_yuret else "",
                                    datasets_root, yuret_train_filepath,
                                    datasets_root, yuret_test_filepath,
                                    embeddings_part,
                                    skip_testing, max_epochs)

    commandline_args = always_constant_part + \
              "--crf %d " \
              "--lr_method %s " \
              "--batch-size %d " \
              "--dropout %1.1lf " \
              "--char_dim %d " \
              "--char_lstm_dim %d " \
              "--morpho_tag_dim %d " \
              "--morpho_tag_lstm_dim %d " \
              "--morpho_tag_type %s " \
              "--morpho-tag-column-index %d " \
              "--word_dim %d " \
              "--word_lstm_dim %d "\
              "--cap_dim %d "\
              "--integration_mode %d " \
              "--active_models %d " \
              "--multilayer %d " \
              "--shortcut_connections %d " \
              "--reload %d" % (crf,
                               lr_method,
                               batch_size,
                               dropout,
                               char_dim,
                               char_lstm_dim,
                               morpho_tag_dim,
                               morpho_tag_lstm_dim,
                               morpho_tag_type,
                               morpho_tag_column_index,
                               word_dim,
                               word_lstm_dim,
                               cap_dim,
                               integration_mode,
                               active_models,
                               multilayer,
                               shortcut_connections,
                               reload)

    # tagger_root = "/media/storage/genie/turkish-ner/code/tagger"

    print _run
    print _run.info

    print subprocess.check_output(["id"])
    print subprocess.check_output(["pwd"])

    opts = read_args(args_as_a_list=commandline_args.split(" "))
    print opts
    parameters = form_parameters_dict(opts)
    print parameters
    # model_path = get_name(parameters)
    model_path = get_model_subpath(parameters)
    print model_path

    task_names = ["NER", "MORPH", "YURET"]

    for task_name in task_names:
        _run.info["%s_dev_f_score" % task_name] = dict()
        _run.info["%s_test_f_score" % task_name] = dict()

    _run.info['starting'] = 1

    dummy_prefix = ""

    full_commandline = dummy_prefix + execution_part + commandline_args

    print full_commandline
    process = subprocess.Popen(full_commandline.split(" "),
                               stdout=subprocess.PIPE,
                               stderr=subprocess.STDOUT)

    def record_metric(epoch, label, value):
        if str(epoch) in _run.info[label]:
            _run.info[label][str(epoch)].append(value)
        else:
            _run.info[label][str(epoch)] = list()
            _run.info[label][str(epoch)].append(value)

    def capture_information(line):

        # 1
        """
        NER Epoch: %d Best dev and accompanying test score, best_dev, best_test: %lf %lf 
        """
        for task_name in task_names:
            m = re.match("^%s Epoch: (\d+) .* best_dev, best_test: (.+) (.+)$" % task_name, line)
            if m:
                epoch = int(m.group(1))
                best_dev = float(m.group(2))
                best_test = float(m.group(3))

                record_metric(epoch, "%s_dev_f_score" % task_name, best_dev)
                record_metric(epoch, "%s_test_f_score" % task_name, best_test)

    for line in iter(process.stdout.readline, ''):
        sys.stdout.write(line)
        capture_information(line)
        sys.stdout.flush()

    return model_path
Esempio n. 3
0
def run_a_single_configuration_without_fabric(
        crf, lr_method, dropout, char_dim, char_lstm_dim, morpho_tag_dim,
        morpho_tag_lstm_dim, morpho_tag_type, morpho_tag_column_index,
        word_dim, word_lstm_dim, cap_dim, separate_bilstms, skip_testing,
        max_epochs, train_filepath, dev_filepath, test_filepath,
        embeddings_filepath, reload, _run):

    from sacred.observers import MongoObserver
    """
    python train.py --pre_emb ../../data/we-300.txt --train dataset/tr.train --dev dataset/tr.test --test dataset/tr.test --word_dim 300  --word_lstm_dim 200 --word_bidirect 1 --cap_dim 100 --crf 1 --lr_method=sgd-lr_0.01 --maximum-epochs 100 --char_dim 200 --char_lstm_dim 200 --char_bidirect 1 --morpho_tag_dim 100 --morpho_tag_lstm_dim 100 --morpho_tag_type char --overwrite-mappings 1 --batch-size 5
    """

    execution_part = "python train.py "

    if word_dim == 0:
        embeddings_part = ""
    else:
        embeddings_part = "--pre_emb ../../datasets/%s " % embeddings_filepath

    print(train_filepath, dev_filepath, test_filepath, skip_testing,
          max_epochs)

    always_constant_part = "-T ../../datasets/%s " \
          "-d ../../datasets/%s " \
          "-t ../../datasets/%s " \
          "%s" \
          "--skip-testing %d " \
          "--tag_scheme iobes " \
          "--maximum-epochs %d " % (train_filepath, dev_filepath, test_filepath, embeddings_part, skip_testing, max_epochs)

    commandline_args = always_constant_part + \
              "--crf %d " \
              "--lr_method %s " \
              "--dropout %1.1lf " \
              "--char_dim %d " \
              "--char_lstm_dim %d " \
              "--morpho_tag_dim %d " \
              "--morpho_tag_lstm_dim %d " \
              "--morpho_tag_type %s " \
              "--morpho-tag-column-index %d " \
              "--word_dim %d " \
              "--word_lstm_dim %d "\
              "--cap_dim %d "\
              "--separate-bilstms %d "\
              "--reload %d" % (crf,
                               lr_method,
                               dropout,
                               char_dim,
                               char_lstm_dim,
                               morpho_tag_dim,
                               morpho_tag_lstm_dim,
                               morpho_tag_type,
                               morpho_tag_column_index,
                               word_dim,
                               word_lstm_dim,
                               cap_dim,
                               separate_bilstms,
                               reload)

    tagger_root = "/media/storage/genie/turkish-ner/code/tagger"

    print _run
    print _run.info

    print subprocess.check_output(["id"])
    print subprocess.check_output(["pwd"])

    opts = read_args(commandline_args.split(" "))
    # print opts
    parameters = form_parameters_dict(opts)
    # print parameters
    # model_path = get_name(parameters)
    model_path = get_model_subpath(parameters)
    print model_path

    _run.info['costs'] = dict()
    _run.info['best_performances'] = dict()

    _run.info['starting'] = 1

    dummy_prefix = ""

    print dummy_prefix + execution_part + commandline_args
    process = subprocess.Popen(
        (dummy_prefix + execution_part + commandline_args).split(" "),
        stdout=subprocess.PIPE,
        stderr=subprocess.STDOUT)

    def record_metric(_run, epoch, samples, label, value):
        if str(epoch) in _run.info[label]:
            _run.info[label][str(epoch)].append(value)
        else:
            _run.info[label][str(epoch)] = list()
            _run.info[label][str(epoch)].append(value)

    for line in iter(process.stdout.readline, ''):
        sys.stdout.write(line)
        m = re.match(
            "^Epoch (\d+): (\d+) Samples read. Avg. cost: ([^,]+), Scores on dev: ([^,]+), (.+)$",
            line)
        if m:
            epoch = int(m.group(1))
            samples = int(m.group(2))
            epoch_avg_cost = float(m.group(3))
            if skip_testing == 1 or dev_filepath == test_filepath:
                epoch_performance = float(m.group(4))
            else:
                epoch_performance = float(m.group(5))
            record_metric(_run, epoch, samples, "costs", epoch_avg_cost)
            record_metric(_run, epoch, samples, "best_performances",
                          epoch_performance)
        sys.stdout.flush()

    # for epoch in range(max_epochs):
    #     epoch_cost = subprocess.check_output(("tail -1 %s" % os.path.join("models", model_path, "epoch-%08d" % epoch, "epoch_cost.txt")).split(" "))
    #     best_performances = subprocess.check_output(("cat %s" % os.path.join("models", model_path, "epoch-%08d" % epoch, "best_performances.txt")).split(" "))
    #     print "EPOCHCOST: " + epoch_cost
    #     _run.info['costs'][str(epoch)] = float(epoch_cost.strip())
    #     print "BESTPERF: " + best_performances
    #     if skip_testing == 1 or dev_filepath == test_filepath:
    #         _run.info['best_performances'][str(epoch)] = float(best_performances.split(" ")[0])
    #     else:
    #         _run.info['best_performances'][str(epoch)] = float(best_performances.split(" ")[1])

    return model_path
Esempio n. 4
0
def main(argv=None):  # pylint: disable=unused-argument

  # if tf.gfile.Exists(FLAGS.eval_dir):
  #   tf.gfile.DeleteRecursively(FLAGS.eval_dir)
  # tf.gfile.MakeDirs(FLAGS.eval_dir)

  # Read parameters from command line
  opts = read_args(evaluation=True)

  # Parse parameters
  parameters = form_parameters_dict(opts)

  # Check parameters validity
  assert os.path.isfile(opts.train)
  assert os.path.isfile(opts.dev)
  assert os.path.isfile(opts.test)
  assert parameters['char_dim'] > 0 or parameters['word_dim'] > 0
  assert 0. <= parameters['dropout'] < 1.0
  assert parameters['t_s'] in ['iob', 'iobes']
  assert not parameters['all_emb'] or parameters['pre_emb']
  assert not parameters['pre_emb'] or parameters['word_dim'] > 0
  assert not parameters['pre_emb'] or os.path.isfile(parameters['pre_emb'])

  # Check evaluation script / folders
  if not os.path.isfile(eval_script):
      raise Exception('CoNLL evaluation script not found at "%s"' % eval_script)
  if not os.path.exists(eval_temp):
      os.makedirs(eval_temp)
  if not os.path.exists(models_path):
      os.makedirs(models_path)
  event_logs_path = os.path.join(eval_temp, "eval_logs")
  # if not os.path.exists(event_logs_path):
  #     os.makedirs(event_logs_path)

  # Initialize model
  model = MainTaggerModel(parameters=parameters, models_path=models_path,
                          overwrite_mappings=opts.overwrite_mappings)
  print "MainTaggerModel location: %s" % model.model_path

  # Data parameters
  lower = parameters['lower']
  zeros = parameters['zeros']
  tag_scheme = parameters['t_s']

  max_sentence_lengths = {}
  max_word_lengths = {}

  # Load sentences
  train_sentences, max_sentence_lengths['train'], max_word_lengths['train'] = \
      loader.load_sentences(opts.train, lower, zeros)
  dev_sentences, max_sentence_lengths['dev'], max_word_lengths['dev'] = loader.load_sentences(
      opts.dev, lower, zeros)
  test_sentences, max_sentence_lengths['test'], max_word_lengths['test'] = loader.load_sentences(
      opts.test, lower, zeros)

  global_max_sentence_length, global_max_char_length = \
      calculate_global_maxes(max_sentence_lengths, max_word_lengths)

  # Use selected tagging scheme (IOB / IOBES)
  update_tag_scheme(train_sentences, tag_scheme)
  update_tag_scheme(dev_sentences, tag_scheme)
  update_tag_scheme(test_sentences, tag_scheme)

  # Create a dictionary / mapping of words
  # If we use pretrained embeddings, we add them to the dictionary.
  if parameters['pre_emb']:
      dico_words_train = word_mapping(train_sentences, lower)[0]
      dico_words, word_to_id, id_to_word = augment_with_pretrained(
          dico_words_train.copy(),
          parameters['pre_emb'],
          list(itertools.chain.from_iterable(
              [[w[0] for w in s] for s in dev_sentences + test_sentences])
          ) if not parameters['all_emb'] else None
      )
  else:
      dico_words, word_to_id, id_to_word = word_mapping(train_sentences, lower)
      dico_words_train = dico_words

  # Create a dictionary and a mapping for words / POS tags / tags
  dico_chars, char_to_id, id_to_char = char_mapping(train_sentences)
  dico_tags, tag_to_id, id_to_tag = tag_mapping(train_sentences)

  if opts.overwrite_mappings:
      print 'Saving the mappings to disk...'
      model.save_mappings(id_to_word, id_to_char, id_to_tag)

  model.reload_mappings()

  # Index data
  train_buckets, train_stats, train_unique_words = prepare_dataset(
      train_sentences, word_to_id, char_to_id, tag_to_id,
      global_max_sentence_length, global_max_char_length,
      lower
  )
  dev_buckets, dev_stats, dev_unique_words = prepare_dataset(
      dev_sentences, word_to_id, char_to_id, tag_to_id,
      global_max_sentence_length, global_max_char_length,
      lower
  )
  test_buckets, test_stats, test_unique_words = prepare_dataset(
      test_sentences, word_to_id, char_to_id, tag_to_id,
      global_max_sentence_length, global_max_char_length,
      lower
  )

  print "%i / %i / %i sentences in train / dev / test." % (
      len(train_stats), len(dev_stats), len(test_stats))

  print "%i / %i / %i words in train / dev / test." % (
      sum([x[0] for x in train_stats]), sum([x[0] for x in dev_stats]),
      sum([x[0] for x in test_stats]))

  print "%i / %i / %i longest sentences in train / dev / test." % (
      max([x[0] for x in train_stats]), max([x[0] for x in dev_stats]),
      max([x[0] for x in test_stats]))

  print "%i / %i / %i shortest sentences in train / dev / test." % (
      min([x[0] for x in train_stats]), min([x[0] for x in dev_stats]),
      min([x[0] for x in test_stats]))

  for i, label in [[2, 'char']]:
      print "%i / %i / %i total %s in train / dev / test." % (
          sum([sum(x[i]) for x in train_stats]), sum([sum(x[i]) for x in dev_stats]),
          sum([sum(x[i]) for x in test_stats]),
          label)

      print "%i / %i / %i max. %s lengths in train / dev / test." % (
          max([max(x[i]) for x in train_stats]), max([max(x[i]) for x in dev_stats]),
          max([max(x[i]) for x in test_stats]),
          label)

      print "%i / %i / %i min. %s lengths in train / dev / test." % (
          min([min(x[i]) for x in train_stats]), min([min(x[i]) for x in dev_stats]),
          min([min(x[i]) for x in test_stats]),
          label)

  print "Max. sentence lengths: %s" % max_sentence_lengths
  print "Max. char lengths: %s" % max_word_lengths

  for label, bin_stats, n_unique_words in [['train', train_stats, train_unique_words],
                                           ['dev', dev_stats, dev_unique_words],
                                           ['test', test_stats, test_unique_words]]:
      int32_items = len(train_stats) * (
          max_sentence_lengths[label] * (5 + max_word_lengths[label]) + 1)
      float32_items = n_unique_words * parameters['word_dim']
      total_size = int32_items + float32_items
      logging.info("Input ids size of the %s dataset is %d" % (label, int32_items))
      logging.info("Word embeddings (unique: %d) size of the %s dataset is %d" % (
          n_unique_words, label, float32_items))
      logging.info("Total size of the %s dataset is %d" % (label, total_size))

  batch_size = 5

  # Build the model
  cost, train_step, tag_scores, tag_ids, word_ids, \
  crf_transition_params, sentence_lengths, enqueue_op, placeholders = model.build(
      max_sentence_length_scalar=global_max_sentence_length,
      max_word_length_scalar=global_max_char_length,
      batch_size_scalar=batch_size,
      **parameters)

  FLAGS = tf.app.flags.FLAGS

  tf.app.flags.DEFINE_string('eval_dir', event_logs_path,
                             """Directory where to write event logs.""")
  tf.app.flags.DEFINE_string('eval_data', 'test',
                             """Either 'test' or 'train_eval'.""")
  tf.app.flags.DEFINE_string('checkpoint_dir', model.model_path,
                             """Directory where to read model checkpoints.""")
  tf.app.flags.DEFINE_integer('eval_interval_secs', 60 * 5,
                              """How often to run the eval.""")
  tf.app.flags.DEFINE_integer('num_examples', 10000,
                              """Number of examples to run.""")
  tf.app.flags.DEFINE_boolean('run_once', False,
                              """Whether to run eval only once.""")

  evaluate(model,
           dev_buckets, test_buckets,
           FLAGS, opts,
           id_to_tag,
           batch_size,
           placeholders,
           enqueue_op, tag_scores, tag_ids, word_ids, crf_transition_params, sentence_lengths,
           FLAGS.eval_dir,
           tag_scheme)
Esempio n. 5
0
def train_a_single_configuration(
        lang_name, datasets_root, crf, lr_method, batch_size,
        sparse_updates_enabled, dropout, char_dim, char_lstm_dim,
        morpho_tag_dim, morpho_tag_lstm_dim, morpho_tag_type,
        morpho_tag_column_index, word_dim, word_lstm_dim, cap_dim,
        skip_testing, starting_epoch_no, maximum_epochs, file_format, debug,
        ner_train_file, ner_dev_file, ner_test_file, md_train_file,
        md_dev_file, md_test_file,
        use_golden_morpho_analysis_in_word_representation, embeddings_filepath,
        integration_mode, active_models, multilayer, shortcut_connections,
        reload, model_path, model_epoch_path, dynet_gpu, _run):
    """
    python train.py --pre_emb ../../data/we-300.txt --train dataset/gungor.ner.train.only_consistent --dev dataset/gungor.ner.dev.only_consistent --test dataset/gungor.ner.test.only_consistent --word_di
m 300  --word_lstm_dim 200 --word_bidirect 1 --cap_dim 100 --crf 1 [email protected] --maximum-epochs 50 --char_dim 200 --char_lstm_dim 200 --char_bid
irect 1 --overwrite-mappings 1 --batch-size 1 --morpho_tag_dim 100 --integration_mode 2
    """

    execution_part = "python main.py --command train --overwrite-mappings 1 "

    if sparse_updates_enabled == 0:
        execution_part += "--disable_sparse_updates "

    if dynet_gpu == 1:
        execution_part += "--dynet-gpu 1 "

    if use_golden_morpho_analysis_in_word_representation == 1:
        execution_part += "--use_golden_morpho_analysis_in_word_representation "

    execution_part += "--debug " + str(debug) + " "

    if word_dim == 0:
        embeddings_part = ""
    else:
        if embeddings_filepath:
            embeddings_part = "--pre_emb %s/%s " % (datasets_root,
                                                    embeddings_filepath)
        else:
            embeddings_part = ""

    always_constant_part = "--lang_name %s --file_format %s " \
                           "--ner_train_file %s/%s/%s " \
                           "%s" \
                           "--ner_test_file %s/%s/%s " \
                           "--md_train_file %s/%s/%s " \
                           "%s" \
                           "--md_test_file %s/%s/%s " \
                           "%s" \
                           "--skip-testing %d " \
                           "--tag_scheme iobes " \
                           "--starting-epoch-no %d " \
                           "--maximum-epochs %d " % (lang_name, file_format,
                                                     datasets_root, lang_name, ner_train_file,
                                                     ("--ner_dev_file %s/%s/%s " % (datasets_root, lang_name, ner_dev_file)) if ner_dev_file else "",
                                                     datasets_root, lang_name, ner_test_file,
                                                     datasets_root, lang_name, md_train_file,
                                                     ("--md_dev_file %s/%s/%s " % (datasets_root, lang_name,
                                                                                    md_dev_file)) if md_dev_file else "",
                                                     datasets_root, lang_name, md_test_file,
                                                     embeddings_part,
                                                     skip_testing, starting_epoch_no, maximum_epochs)

    if reload == 1:
        reload_part = "--reload %d --model_path %s --model_epoch_path %s " % (
            reload, model_path, model_epoch_path)
    else:
        reload_part = "--reload 0 "

    commandline_args = always_constant_part + \
              "--crf %d " \
              "--lr_method %s " \
              "--batch-size %d " \
              "--dropout %1.1lf " \
              "--char_dim %d " \
              "--char_lstm_dim %d " \
              "--morpho_tag_dim %d " \
              "--morpho_tag_lstm_dim %d " \
              "--morpho_tag_type %s " \
              "--morpho-tag-column-index %d " \
              "--word_dim %d " \
              "--word_lstm_dim %d "\
              "--cap_dim %d "\
              "--integration_mode %d " \
              "--active_models %d " \
              "--multilayer %d " \
              "--shortcut_connections %d " \
              "%s" % (crf,
                               lr_method,
                               batch_size,
                               dropout,
                               char_dim,
                               char_lstm_dim,
                               morpho_tag_dim,
                               morpho_tag_lstm_dim,
                               morpho_tag_type,
                               morpho_tag_column_index,
                               word_dim,
                               word_lstm_dim,
                               cap_dim,
                               integration_mode,
                               active_models,
                               multilayer,
                               shortcut_connections,
                               reload_part)

    # tagger_root = "/media/storage/genie/turkish-ner/code/tagger"

    print(_run)
    print(_run.info)

    print(subprocess.check_output(["id"]))
    print(subprocess.check_output(["pwd"]))

    opts = read_args(args_as_a_list=commandline_args.split(" "))
    print(opts)
    parameters = form_parameters_dict(opts)
    print(parameters)
    # model_path = get_name(parameters)
    model_path = get_model_subpath(parameters)
    print(model_path)

    task_names = ["NER", "MORPH"]

    for task_name in task_names:
        _run.info["%s_dev_f_score" % task_name] = dict()
        _run.info["%s_test_f_score" % task_name] = dict()

    _run.info["avg_loss"] = dict()

    _run.info['starting'] = 1

    dummy_prefix = ""

    full_commandline = dummy_prefix + execution_part + commandline_args

    print(full_commandline)
    process = subprocess.Popen(full_commandline.split(" "),
                               stdout=subprocess.PIPE,
                               stderr=subprocess.STDOUT)

    def record_metric(epoch, label, value):
        """
        Each label can have multiple values in an epoch. This is for updates to the metric's value.
        i.e. metrics calculated before an epoch has finished.
        :param epoch:
        :param label:
        :param value:
        :return:
        """
        epoch_str = str(epoch)
        if epoch_str in _run.info[label]:
            _run.info[label][epoch_str].append(value)
        else:
            _run.info[label][epoch_str] = [value]

    def capture_information(line):

        # 1
        """
        NER Epoch: %d Best dev and accompanying test score, best_dev, best_test: %lf %lf
        """
        for task_name in task_names:
            m = re.match(
                "^.*%s Epoch: (\d+) .* best_dev, best_test: (.+) (.+)$" %
                task_name, line)
            if m:
                epoch = int(m.group(1))
                best_dev = float(m.group(2))
                best_test = float(m.group(3))

                record_metric(epoch, "%s_dev_f_score" % task_name, best_dev)
                record_metric(epoch, "%s_test_f_score" % task_name, best_test)

        m = re.match("^.*Epoch (\d+) Avg. loss over training set: (.+)$", line)
        if m:
            epoch = int(m.group(1))
            avg_loss_over_training_set = float(m.group(2))
            record_metric(epoch, "avg_loss", avg_loss_over_training_set)
        """
        MainTaggerModel location: ./models/model-00000227
        """
        m = re.match("^.*MainTaggerModel location: (.+)$", line)
        if m:
            model_dir_path = m.group(1)
            _run.info["model_dir_path"] = model_dir_path
        """
        LOG: model_epoch_dir_path: {}
        """
        m = re.match("^.*LOG: model_epoch_dir_path: (.+)$", line)
        if m:
            model_epoch_dir_path = m.group(1)
            _run.info["model_epoch_dir_path"] = model_epoch_dir_path

    for line in process.stdout:
        sys.stdout.write(line.decode("utf8"))
        capture_information(line.decode("utf8"))
        sys.stdout.flush()

    return model_path