Esempio n. 1
0
def ga_search(target, number_of_iterations=50, population_size=100):
    best_solution = None
    initial_population = generate_population(target, population_size)

    for iterations_counter in range(number_of_iterations):
        estimated_population = estimate_population(initial_population, target)
        # selection = sorted(estimated_population.items(), key=lambda x: x[1])
        # selection = [key for key, value in estimated_population.items()]
        selection = select_population(estimated_population)
        elite_solutions = selection[:50]
        offsprings = crossover(elite_solutions)
        estimated_offsprings = estimate_population(offsprings, target)
        selected_offsprings = select_population(estimated_offsprings)
        best_solution_in_generation = selected_offsprings[0]
        best_solution_in_generation_score = estimate_solution(best_solution_in_generation, target)
        # counter1 += int(best_solution_in_generation[1])

        print("Best solution in iteration {} is {} -> {}".format(iterations_counter, best_solution_in_generation, best_solution_in_generation_score))

        if best_solution is None:
            best_solution = best_solution_in_generation

        if estimate_solution(best_solution_in_generation, target) < estimate_solution(best_solution, target):
            best_solution = best_solution_in_generation
            best_solution_score = estimate_solution(best_solution, target)
            elite_solutions.append(best_solution)

        initial_population = mutate_population(selection)
        for elites in elite_solutions:
            initial_population.append(elites)
    print("Best solution {} -> {}".format(best_solution, best_solution_score))
Esempio n. 2
0
def simulate(target: np.ndarray) -> None:
    """
    Start main GA loop
    :param target: target image
    """
    population = generate_population(POPULATION_SIZE, target.shape, default_color=BACKGROUND_COLOR)
    fitness = calculate_population_fitness(population, target)
    start = time()
    print("Started evolution")

    for step in range(4294967296):  # 2^32
        parents = select_breeding_pool(population, fitness, BREEDING_INDIVIDUALS)
        crossover = do_crossover(parents, BREEDING_INDIVIDUALS, target.shape, CROSSOVER_INDIVIDUALS)
        mutation = mutate(crossover, target.shape, CROSSOVER_INDIVIDUALS, LINE_LENGTH, target)
        population[0:parents.shape[0], :] = parents
        population[parents.shape[0]:, :] = mutation
        fitness = calculate_population_fitness(population, target)

        best_ind_index = np.argmin(fitness)
        best_ind = population[best_ind_index]
        cv2.imshow("Current-min", best_ind)
        cv2.waitKey(1)
        if step % 500 == 0:
            print('%.6d - %.6f seconds' % (step, (time() - start)), end='\t\t')
            print('Fitness -\t{}'.format(np.min(fitness)))

            best_ind_index = np.argmin(fitness)
            best_ind = population[best_ind_index]
            cv2.imwrite(f"./out/{step}-{fitness[best_ind_index]}.jpg", best_ind)
Esempio n. 3
0
def find_solution():
    print '\n\n## Searching for the best solution '
    population = generate_population(population_size, backpack_capacity)

    value = []
    iteraction = []
    best_solution = None

    for i in range(max_generations):
        fitness = calculate_fitness(population, items, max_weight)
        parents = parent_selection(fitness)
        crossovered = apply_crossover(parents, backpack_capacity,
                                      crossover_probability,
                                      mutation_probability)
        population = calculate_fitness(crossovered, items, max_weight)

        candidate, _ = find_two_fittest_individuals(population)
        if best_solution is None:
            best_solution = candidate
        elif candidate.value > best_solution.value:
            best_solution = candidate

        value.append(best_solution.value)
        iteraction.append(i)

        if i % 100 == 0:
            print '\nCurrent generation..: {}'.format(i)
            print 'Best solution so far: {}'.format(best_solution.value)

    print '\n\n## Best solution found:'
    print '\nWeight: {}'.format(best_solution.weight)
    print 'Value.: {}'.format(best_solution.value)
    print '\nBackpack configuration: {}'.format(best_solution.cromossome)

    plt.plot(iteraction, value)
    plt.xlabel('Generation')
    plt.ylabel('Value')
    plt.show()
Esempio n. 4
0
import numpy as np
from utils import read_fasta, estimate_population, generate_population

initial_alignment_df = read_fasta(filename='dataset/BB11001-m.fa')

# initial_alignment = [np.fromstring(sequence, dtype=np.uint8) for sequence in initial_alignment_df.get("sequence")]
initial_alignment = [
    sequence for sequence in initial_alignment_df.get("sequence")
]

# initial_alignment = np.array(initial_alignment)

population = generate_population(size=20, alignment=initial_alignment)
print(population)
print(estimate_population(population))
#
# print(f'Estimated sequence value: {estimated_value}')
Esempio n. 5
0
        file[0].split(' ')[1])

    wt = [float(i) for i in file[1::]]

    job_machine_time = JobMachine(num_jobs)
    jm_count = 0
    for n in range(num_jobs):
        for p in range(num_machines):
            job_machine_time.set_wt(p, n, wt[jm_count])
            jm_count += 1

    for iteration in iterations:
        for pop in pop_size:
            population = []
            for i in range(pop):
                population.append(generate_population(num_jobs, num_machines))
            print("Population\n", population)

            g = GenerationTool(num_jobs, num_machines, population,
                               job_machine_time, iteration, pop, file_name)

            g.calculate_individual_worktime()

            print("Population worktime\n")
            print(g.population_worktime)

            g.first_gen()

            for i in range(1, iteration + 1):
                g.create_new_gen(i)
Esempio n. 6
0
def search(number_of_cities, number_of_iterations, population_size):
    np.random.seed(1)
    city_coordinates = np.random.rand(number_of_cities, 2)

    # city_coordinates = load_coordinates("att48_xy.txt")
    print(city_coordinates)

    distance_matrix = squareform(pdist(city_coordinates, 'euclidean'))

    scouts = int(population_size / 10)
    workers = population_size - scouts
    best_solution = None
    # global_solutions = generate_population(number_of_cities, scouts)
    global_solutions = generate_population(len(city_coordinates), scouts)

    for iterations_counter in range(number_of_iterations):
        estimated_global_solutions = estimate_population(
            global_solutions, distance_matrix)
        local_solutions = workers_activity(workers,
                                           estimated_global_solutions[:15],
                                           distance_matrix)
        estimated_local_solutions = estimate_population(
            local_solutions, distance_matrix)

        new_population_size = len(local_solutions) - len(
            estimated_local_solutions)
        new_population = generate_population(len(city_coordinates),
                                             new_population_size * 10)
        estimated_new_population = estimate_population(new_population,
                                                       distance_matrix)
        for solution in estimated_new_population[:int(new_population_size /
                                                      10)]:
            estimated_local_solutions.append(solution)

        elite_solutions = estimated_local_solutions[:15]
        best_solution_in_generation = estimated_local_solutions[0]
        best_solution_in_generation_score = estimate_solution(
            best_solution_in_generation, distance_matrix)

        # print(f"Best solution in iter {iterations_counter} is {best_solution_in_generation} -> {best_solution_in_generation_score}")
        print(
            f"Best solution score in iter {iterations_counter} is {best_solution_in_generation_score}"
        )
        print(f"Number of local solutions: {len(local_solutions)}")
        print(
            f"Number of local estimated_local_solutions: {len(estimated_local_solutions)}"
        )
        print(f"Number of elites: {len(elite_solutions)}")

        if best_solution is None:
            best_solution = best_solution_in_generation
            best_solution_score = best_solution_in_generation_score

        if best_solution_in_generation_score < best_solution_score:
            best_solution = best_solution_in_generation
            best_solution_score = best_solution_in_generation_score
        # elif random.randint(1, number_of_iterations) < iterations_counter:
        #     elite_solutions.append(best_solution_in_generation)

        if estimate_solution(best_solution, distance_matrix) == 0:
            break

        global_solutions = elite_solutions
        plotTSP(best_solution, city_coordinates)

    return best_solution, best_solution_score
Esempio n. 7
0
def iteratingMain():
    population = generate_population()
    time_step = params['TIME_STEP']
    max_time = params['SIMULATION_TIME']

    iterator(population, time_step, max_time)