Esempio n. 1
0
# Authors: Liuqing Chen, Feng Shi,
#          and Isaac Engel (13th September 2017)
# Last updated: 2nd December 2017
# ####################################################

from main import Tetris
import utils
import timeit
from copy import deepcopy

# Example target shape
# target = [[1, 0, 1, 1], [1, 1, 1, 1], [0, 1, 1, 1], [1, 1, 0, 0]]  # NOTE: in your test, you may not use this example.

# Uncomment the following line to generate a random target shape
target = utils.generate_target(
    width=100, height=100,
    density=0.6)  # NOTE: it is recommended to keep density below 0.8

solution = Tetris(deepcopy(target))

valid, missing, excess, error_pieces = utils.check_solution(
    target, solution)  # checks if the solution is valid

if not valid:

    print("The solution is not valid!")

else:  # if the solution is valid, test time performance and accuracy

    # TIME PERFORMANCE
    # There will be three different values of the parameter 'target' with increasing complexity in real test.
Esempio n. 2
0
# ####################################################

import improved
#from UsingLimits import Tetris
#from Anusha import Tetris
from improved import Tetris
import utils
import timeit
#from ComparisonTest import CompareTarget


# Example target shape
#target = utils.generate_target(20,20,0.7) # NOTE: in your test, you may not use this example.
#print(target)
# Uncomment the following line to generate a random target shape
target = utils.generate_target(1000,1000,0.7)  # NOTE: it is recommended to keep density below 0.8
#target = [[0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0], [0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1], [1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1], [1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1], [1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1], [0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1], [0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]]

#target = [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 0, 0, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 0, 1, 1, 0, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0, 1, 1, 1], [0, 1, 1, 1, 0, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 1, 1, 1, 0, 1]]

#print(target)
solution = Tetris(target)
#print(solution)

valid, missing, excess, error_pieces = utils.check_solution(target, solution)  # checks if the solution is valid
#CompareTarget(target)

if not valid:

    print("The solution is not valid!")
Esempio n. 3
0
            [0, 1, 1, 1, 0, 0],
            [1, 1, 1, 1, 1, 0]
         ]
         
perfect_solution = [
                    [(0, 0),  (0, 0),  (8, 1),  (0, 0),   (0, 0),  (0, 0)],
                    [(0, 0),  (0, 0),  (8, 1),  (0, 0),   (13, 2), (0, 0)],
                    [(0, 0),  (8, 1),  (8, 1),  (13, 2),  (13, 2), (13, 2)],
                    [(0, 0),  (13, 3), (18, 4), (18, 4),  (0, 0),  (0, 0)],
                    [(13, 3), (13, 3), (13, 3), (18, 4),  (18, 4), (0, 0)]
                   ]
"""
# NOTE: This example is used for the mock solution from 'main.py' only.

# Uncomment the following line to generate a random target shape
target, perfect_solution = utils.generate_target(width=100, height=100, density=0.7, forbidden_pieces=the_forbidden_pieces) # NOTE: it is recommended to keep density below 0.8
solution = Tetris(deepcopy(target))
#solution = perfect_solution
valid, missing, excess, error_pieces = utils.check_solution(target, solution, the_forbidden_pieces)  # checks if the solution is valid

if not valid or len(error_pieces)!=0:
    if len(error_pieces) != 0:
        print('WARNING: {} pieces have a wrong shapeID. They are labelled in image of the solution, and their PieceID are: {}.'
                  .format(len(error_pieces), error_pieces))
        print("Displaying solution...")
        utils.visual_perfect(perfect_solution, solution, the_forbidden_pieces)
    print("WARNING: The solution is not valid, no score will be given!")

else:  # if the solution is valid, test time performance and accuracy

    # TIME PERFORMANCE
Esempio n. 4
0
    #debugGrid(lambda x : x.stateid)
    ############################
    #emptying the grid
    solution = []
    for y, row in enumerate(ogrid):
        solution.append([])
        for sq in row:
            if sq.state == 0:
                solution[y].append((0, 0))
            elif sq.state == -1:
                solution[y].append((0, 0))
            else:
                solution[y].append((sq.state, sq.stateid))
    return solution

    #utils.visualisation(target,solution)


width = 20
height = 25
dencity = 0.8
target, a, TheSolution = utils.generate_target(width, height, dencity)

solution2 = Tetris(target, a)
valid, missing, excess, error_pieces, use_diff = utils.check_solution(
    target, solution2, a)
total_blocks = sum([sum(row) for row in target])
percent = (missing + excess) / total_blocks
print(1 - percent)
print(a)
Esempio n. 5
0
    16: 0,
    17: 0,
    18: 1,
    19: 0
}

perfect_solution = [[(0, 0), (0, 0), (8, 1), (0, 0), (0, 0)],
                    [(0, 0), (0, 0), (8, 1), (1, 2), (1, 2)],
                    [(0, 0), (8, 1), (8, 1), (1, 2), (1, 2)],
                    [(0, 0), (13, 3), (18, 4), (18, 4), (0, 0)],
                    [(13, 3), (13, 3), (13, 3), (18, 4), (18, 4)]]
# NOTE: This example is used for the mock solution from 'main.py' only.

# Uncomment the following line to generate a random target shape
target, limit_tetris, perfect_solution = utils.generate_target(
    width=20, height=20,
    density=0.8)  # NOTE: it is recommended to keep density below 0.8

solution = Tetris(deepcopy(target), deepcopy(limit_tetris))

valid, missing, excess, error_pieces, use_diff = utils.check_solution(
    target, solution, limit_tetris)  # checks if the solution is valid

if not valid or len(error_pieces) != 0:
    if len(error_pieces) != 0:
        print(
            'WARNING: {} pieces have a wrong shapeID. They are labelled in image of the solution, and their PieceID are: {}.'
            .format(len(error_pieces), error_pieces))
        print("Displaying solution...")
        utils.visual_perfect(perfect_solution, solution)
    print("WARNING: The solution is not valid, no score will be given!")
Esempio n. 6
0
#generate_shape(shape_id)
# Co ordingate are done backwards y,x
#
#
#
from copy import deepcopy  # copy 'target' to avoid modifying it
import utils  # it might be helpful to use 'utils.py'
from operator import add
import timeit

########################################
#Varible Bin!!!!
width = 1000
height = 1000
dencity = 0.7
target, testParts, TheSolution = utils.generate_target(width, height, dencity)
orderlist = "?"  # ok so now this may be usefull

######################
#Running varibles
shapesPlaced = 1

#####################################
#test
testgrid = [[0, 1, 1, 0, 1, 0, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0, 1, 1, 1, 1],
            [0, 1, 0, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 0, 1, 1, 1, 1],
            [0, 1, 1, 0, 1, 1, 1, 0, 1, 0], [0, 0, 1, 1, 0, 1, 1, 1, 0, 0],
            [1, 1, 1, 1, 1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 0, 1, 1, 0, 1],
            [1, 1, 1, 0, 1, 1, 1, 0, 1, 1], [1, 0, 0, 1, 1, 1, 1, 0, 1, 0]]

#testParts = {1: 4, 2: 0, 3: 1, 4: 1, 5: 1, 6: 0, 7: 1, 8: 1, 9: 1, 10: 0, 11: 0, 12: 2, 13: 0, 14: 1, 15: 0, 16: 1, 17: 1, 18: 1, 19: 1}
Esempio n. 7
0
    actions_dict[a.split()[1]] = int(a.split()[0])

num_classes = len(actions_dict)

# train
trainer = Trainer(num_stages, num_layers, num_f_maps, features_dim,
                  num_classes)
no_change = 1
if args.action == "train":
    batch_gen = BatchGenerator(num_classes, actions_dict, segmentation_path,
                               features_path, sample_rate)
    batch_gen.read_data(vid_list_file)
    weights = batch_gen.set_class_weights()
    trainer.ce(weight=weights)
    while (no_change):
        trainer.train(model_dir,
                      batch_gen,
                      num_epochs=num_epochs,
                      batch_size=bz,
                      learning_rate=lr,
                      device=device)
        trainer.predict(model_dir, temp_results_dir, features_path,
                        vid_list_file, num_epochs, actions_dict, device,
                        sample_rate)
        utils.generate_target(segmentation_path, temp_results_dir,
                              vid_list_file)

if args.action == "predict":
    trainer.predict(model_dir, results_dir, features_path, vid_list_file_tst,
                    num_epochs, actions_dict, device, sample_rate)
Esempio n. 8
0
#limit_tetris = {1: 1, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 1, 9: 0, 10: 0, 11: 0, 12: 0, 13: 1, 14: 0, 15: 0, 16: 0, 17: 0, 18: 1, 19: 0}
#
#perfect_solution = [
#                    [(0, 0),  (0, 0),  (8, 1),  (0, 0),   (0, 0)],
#                    [(0, 0),  (0, 0),  (8, 1),  (1, 2),   (1, 2)],
#                    [(0, 0),  (8, 1),  (8, 1),  (1, 2),   (1, 2)],
#                    [(0, 0),  (13, 3), (18, 4), (18, 4),  (0, 0)],
#                    [(13, 3), (13, 3), (13, 3), (18, 4),  (18, 4)]
#                   ]

# NOTE: This example is used for the mock solution from 'main.py' only.

# Uncomment the following line to generate a random target shape
#target, limit_tetris, perfect_solution = utils.generate_target(width=8, height=8, density=0.5)  # NOTE: it is recommended to keep density below 0.8

target, limit_tetris, perfect_solution = utils.generate_target(
    cols, rows, density)
solution = Tetris(deepcopy(target), deepcopy(limit_tetris))

valid, missing, excess, error_pieces, use_diff = utils.check_solution(
    target, solution, limit_tetris)  # checks if the solution is valid

if not valid or len(error_pieces) != 0:
    if len(error_pieces) != 0:
        print(
            'WARNING: {} pieces have a wrong shapeID. They are labelled in image of the solution, and their PieceID are: {}.'
            .format(len(error_pieces), error_pieces))
        print("Displaying solution...")
        utils.visual_perfect(perfect_solution, solution)
    print("WARNING: The solution is not valid, no score will be given!")

else:  # if the solution is valid, test time performance and accuracy
Esempio n. 9
0
    else:  # if the solution is valid, test time performance and accuracy

        # TIME PERFORMANCE
        # There will be three different values of the parameter 'target' with increasing complexity in real test.

        # ACCURACY

        if len(error_pieces) != 0:
            raise TypeError('Wrong shape')

        total_blocks = sum([sum(row) for row in target])

        total_error = (100 * missing / total_blocks) + (100 * excess /
                                                        total_blocks)
        print('total error: {}'.format(total_error))

        return total_error


e_main = 0
for n in range(0, 100):
    #sample = Partial_samples(10, 10, 1, 'Three')
    #sample.fill_square()
    #T = sample.T.tolist()
    T = utils.generate_target(width=50, height=50, density=0.6)

    e_main += test(T, main.Tetris)

print('----------- For solvable samples --------------')
print('avg e_main: {}'.format(e_main / 100))