def generate_video(args): total_time = args.video_length * 100 exp_path = os.path.join(DATA_DIR, "EXP_{:04d}".format(args.expID)) if not os.path.exists(exp_path): raise FileNotFoundError('checkpoint does not exist') print('*** folder fetched: {} ***'.format(exp_path)) os.makedirs(VIDEO_DIR, exist_ok=True) # Retrieve MuJoCo XML files for visualizing ======================================== env_names = [] args.graphs = dict() # existing envs if not args.custom_xml: for morphology in args.morphologies: env_names += [ name[:-4] for name in os.listdir(XML_DIR) if '.xml' in name and morphology in name ] for name in env_names: args.graphs[name] = utils.getGraphStructure( os.path.join(XML_DIR, '{}.xml'.format(name))) # custom envs else: if os.path.isfile(args.custom_xml): assert '.xml' in os.path.basename( args.custom_xml), 'No XML file found.' name = os.path.basename(args.custom_xml) env_names.append(name[:-4]) # truncate the .xml suffix args.graphs[name[:-4]] = utils.getGraphStructure(args.custom_xml) elif os.path.isdir(args.custom_xml): for name in os.listdir(args.custom_xml): if '.xml' in name: env_names.append(name[:-4]) args.graphs[name[:-4]] = utils.getGraphStructure( os.path.join(args.custom_xml, name)) env_names.sort() # Set up env and policy ================================================ args.limb_obs_size, args.max_action = utils.registerEnvs( env_names, args.max_episode_steps, args.custom_xml) # determine the maximum number of children in all the envs if args.max_children is None: args.max_children = utils.findMaxChildren(env_names, args.graphs) # setup agent policy policy = TD3.TD3(args) try: cp.load_model_only(exp_path, policy) except: raise Exception( 'policy loading failed; check policy params (hint 1: max_children must be the same as the trained policy; hint 2: did the trained policy use torchfold (consider pass --disable_fold)?' ) torch.manual_seed(args.seed) np.random.seed(args.seed) # visualize =========================================================== for env_name in env_names: # create env env = utils.makeEnvWrapper(env_name, seed=args.seed, obs_max_len=None)() policy.change_morphology(args.graphs[env_name]) # create unique temp frame dir count = 0 frame_dir = os.path.join( VIDEO_DIR, "frames_{}_{}_{}".format(args.expID, env_name, count)) while os.path.exists(frame_dir): count += 1 frame_dir = "{}/frames_{}_{}_{}".format(VIDEO_DIR, args.expID, env_name, count) os.makedirs(frame_dir) # create video name without overwriting previously generated videos count = 0 video_name = "%04d_%s_%d" % (args.expID, env_name, count) while os.path.exists("{}/{}.mp4".format(VIDEO_DIR, video_name)): count += 1 video_name = "%04d_%s_%d" % (args.expID, env_name, count) # init env vars done = True print("-" * 50) time_step_counter = 0 printProgressBar(0, total_time) while time_step_counter < total_time: printProgressBar(time_step_counter + 1, total_time, prefix=env_name) if done: obs = env.reset() done = False episode_reward = 0 action = policy.select_action(np.array(obs)) # perform action in the environment new_obs, reward, done, _ = env.step(action) episode_reward += reward # draw image of current frame image_data = env.sim.render(VIDEO_RESOLUATION[0], VIDEO_RESOLUATION[1], camera_name="track") img = Image.fromarray(image_data, "RGB") draw = ImageDraw.Draw(img) font = ImageFont.truetype('./misc/sans-serif.ttf', 24) draw.text((200, 10), "Instant Reward: " + str(reward), (255, 0, 0), font=font) draw.text((200, 35), "Episode Reward: " + str(episode_reward), (255, 0, 0), font=font) img.save( os.path.join(frame_dir, "frame-%.10d.png" % time_step_counter)) obs = new_obs time_step_counter += 1 # redirect output so output does not show on window FNULL = open(os.devnull, 'w') # create video subprocess.call([ 'ffmpeg', '-framerate', '50', '-y', '-i', os.path.join(frame_dir, 'frame-%010d.png'), '-r', '30', '-pix_fmt', 'yuv420p', os.path.join(VIDEO_DIR, '{}.mp4'.format(video_name)) ], stdout=FNULL, stderr=subprocess.STDOUT) subprocess.call(['rm', '-rf', frame_dir])
def train(args): # Set up directories =========================================================== os.makedirs(DATA_DIR, exist_ok=True) os.makedirs(BUFFER_DIR, exist_ok=True) exp_name = "EXP_%04d" % (args.expID) exp_path = os.path.join(DATA_DIR, exp_name) rb_path = os.path.join(BUFFER_DIR, exp_name) os.makedirs(exp_path, exist_ok=True) os.makedirs(rb_path, exist_ok=True) # save arguments with open(os.path.join(exp_path, 'args.txt'), 'w+') as f: json.dump(args.__dict__, f, indent=2) # Retrieve MuJoCo XML files for training ======================================== agent_name = args.agent_name envs_train_names = [agent_name] args.graphs = dict() # existing envs if not args.custom_xml: args.graphs[agent_name] = utils.getGraphStructure( os.path.join(XML_DIR, '{}.xml'.format(agent_name))) # custom envs num_envs_train = len(envs_train_names) print("#" * 50 + '\ntraining envs: {}\n'.format(envs_train_names) + "#" * 50) # Set up training env and policy ================================================ args.limb_obs_size, args.max_action = utils.registerEnvs( envs_train_names, args.max_episode_steps, args.custom_xml) max_num_limbs = max( [len(args.graphs[env_name]) for env_name in envs_train_names]) # create vectorized training env obs_max_len = max( [len(args.graphs[env_name]) for env_name in envs_train_names]) * args.limb_obs_size envs_train = [ utils.makeEnvWrapper(name, obs_max_len, args.seed) for name in envs_train_names ] # envs_train = SubprocVecEnv(envs_train) # vectorized env # set random seeds torch.manual_seed(args.seed) np.random.seed(args.seed) # determine the maximum number of children in all the training envs if args.max_children is None: args.max_children = utils.findMaxChildren(envs_train_names, args.graphs) # setup agent policy policy = TD3.LifeLongTD3(args) # Create new training instance or load previous checkpoint ======================== if cp.has_checkpoint(exp_path, rb_path): print("*** loading checkpoint from {} ***".format(exp_path)) total_timesteps, episode_num, replay_buffer, num_samples, loaded_path = cp.load_checkpoint( exp_path, rb_path, policy, args) print("*** checkpoint loaded from {} ***".format(loaded_path)) else: print("*** training from scratch ***") # init training vars total_timesteps = 0 episode_num = 0 num_samples = 0 # different replay buffer for each env; avoid using too much memory if there are too many envs # Initialize training variables ================================================ writer = SummaryWriter("%s/%s/" % (DATA_DIR, exp_name)) s = time.time() # TODO: may have to change the following codes into the loop timesteps_since_saving = 0 this_training_timesteps = 0 episode_timesteps = 0 episode_reward = 0 episode_reward_buffer = 0 done = True # Start training =========================================================== for env_handle, env_name in zip(envs_train, envs_train_names): env = env_handle() obs = env.reset() replay_buffer = utils.ReplayBuffer(max_size=args.rb_max) policy.change_morphology(args.graphs[env_name]) policy.graph = args.graphs[env_name] task_timesteps = 0 done = False episode_timesteps = 0 episode_reward = 0 episode_reward_buffer = 0 while task_timesteps < args.max_timesteps: # train and log after one episode for each env if done: # log updates and train policy if this_training_timesteps != 0: policy.train(replay_buffer, episode_timesteps, args.batch_size, args.discount, args.tau, args.policy_noise, args.noise_clip, args.policy_freq, graphs=args.graphs, env_name=env_name) # add to tensorboard display writer.add_scalar('{}_episode_reward'.format(env_name), episode_reward, task_timesteps) writer.add_scalar('{}_episode_len'.format(env_name), episode_timesteps, task_timesteps) # print to console print( "-" * 50 + "\nExpID: {}, FPS: {:.2f}, TotalT: {}, EpisodeNum: {}, SampleNum: {}, ReplayBSize: {}" .format(args.expID, this_training_timesteps / (time.time() - s), total_timesteps, episode_num, num_samples, len(replay_buffer.storage))) print("{} === EpisodeT: {}, Reward: {:.2f}".format( env_name, episode_timesteps, episode_reward)) this_training_timesteps = 0 s = time.time() # save model and replay buffers if timesteps_since_saving >= args.save_freq: print("!!!!!") timesteps_since_saving = 0 model_saved_path = cp.save_model(exp_path, policy, total_timesteps, episode_num, num_samples, {env_name: replay_buffer}, envs_train_names, args) print("*** model saved to {} ***".format(model_saved_path)) rb_saved_path = cp.save_replay_buffer( rb_path, {env_name: replay_buffer}) print("*** replay buffers saved to {} ***".format( rb_saved_path)) # reset training variables obs = env.reset() done = False episode_reward = 0 episode_timesteps = 0 episode_num += 1 # create reward buffer to store reward for one sub-env when it is not done episode_reward_buffer = 0 # start sampling =========================================================== # sample action randomly for sometime and then according to the policy if task_timesteps < args.start_timesteps: action = np.random.uniform(low=env.action_space.low[0], high=env.action_space.high[0], size=max_num_limbs) else: # remove 0 padding of obs before feeding into the policy (trick for vectorized env) obs = np.array(obs[:args.limb_obs_size * len(args.graphs[env_name])]) policy_action = policy.select_action(obs) if args.expl_noise != 0: policy_action = (policy_action + np.random.normal( 0, args.expl_noise, size=policy_action.size)).clip( env.action_space.low[0], env.action_space.high[0]) # add 0-padding to ensure that size is the same for all envs action = np.append( policy_action, np.array([ 0 for i in range(max_num_limbs - policy_action.size) ])) # perform action in the environment new_obs, reward, done, _ = env.step(action) # record if each env has ever been 'done' # add the instant reward to the cumulative buffer # if any sub-env is done at the momoent, set the episode reward list to be the value in the buffer episode_reward_buffer += reward if done and episode_reward == 0: episode_reward = episode_reward_buffer episode_reward_buffer = 0 writer.add_scalar('{}_instant_reward'.format(env_name), reward, task_timesteps) done_bool = float(done) if episode_timesteps + 1 == args.max_episode_steps: done_bool = 0 done = True # remove 0 padding before storing in the replay buffer (trick for vectorized env) num_limbs = len(args.graphs[env_name]) obs = np.array(obs[:args.limb_obs_size * num_limbs]) new_obs = np.array(new_obs[:args.limb_obs_size * num_limbs]) action = np.array(action[:num_limbs]) # insert transition in the replay buffer replay_buffer.add((obs, new_obs, action, reward, done_bool)) num_samples += 1 # do not increment episode_timesteps if the sub-env has been 'done' if not done: episode_timesteps += 1 total_timesteps += 1 task_timesteps += 1 this_training_timesteps += 1 timesteps_since_saving += 1 obs = new_obs policy.next_task() # save checkpoint after training =========================================================== model_saved_path = cp.save_model(exp_path, policy, total_timesteps, episode_num, num_samples, {envs_train_names[-1]: replay_buffer}, envs_train_names, args) print("*** training finished and model saved to {} ***".format( model_saved_path))
from skeleton_graph_vae.graph_dataset import GraphDataset import envs import gym import utils from graph_vae import wrappers from graph_vae import graph_dataset import numpy as np ant = gym.make("envs:ant-v0") ant = wrappers.ModularEnvWrapper(ant) xml = ant.xml g = utils.getGraphStructure(xml) ds = GraphDataset("data/ant.memory", g, 27) s = ant.reset() print(s.shape)
def train(_run): # Set up directories =========================================================== os.makedirs(DATA_DIR, exist_ok=True) os.makedirs(BUFFER_DIR, exist_ok=True) exp_name = args.expID exp_path = os.path.join(DATA_DIR, exp_name) rb_path = os.path.join(BUFFER_DIR, exp_name) os.makedirs(exp_path, exist_ok=True) os.makedirs(rb_path, exist_ok=True) # save arguments with open(os.path.join(exp_path, "args.txt"), "w+") as f: json.dump(args.__dict__, f, indent=2) # Retrieve MuJoCo XML files for training ======================================== envs_train_names = [] args.graphs = dict() # existing envs if not args.custom_xml: for morphology in args.morphologies: envs_train_names += [ name[:-4] for name in os.listdir(XML_DIR) if ".xml" in name and morphology in name ] for name in envs_train_names: args.graphs[name] = utils.getGraphStructure( os.path.join(XML_DIR, "{}.xml".format(name)), args.observation_graph_type, ) # custom envs else: if os.path.isfile(args.custom_xml): assert ".xml" in os.path.basename( args.custom_xml), "No XML file found." name = os.path.basename(args.custom_xml) envs_train_names.append(name[:-4]) # truncate the .xml suffix args.graphs[name[:-4]] = utils.getGraphStructure( args.custom_xml, args.observation_graph_type) elif os.path.isdir(args.custom_xml): for name in os.listdir(args.custom_xml): if ".xml" in name: envs_train_names.append(name[:-4]) args.graphs[name[:-4]] = utils.getGraphStructure( os.path.join(args.custom_xml, name), args.observation_graph_type) envs_train_names.sort() num_envs_train = len(envs_train_names) print("#" * 50 + "\ntraining envs: {}\n".format(envs_train_names) + "#" * 50) # Set up training env and policy ================================================ args.limb_obs_size, args.max_action = utils.registerEnvs( envs_train_names, args.max_episode_steps, args.custom_xml) max_num_limbs = max( [len(args.graphs[env_name]) for env_name in envs_train_names]) # create vectorized training env obs_max_len = ( max([len(args.graphs[env_name]) for env_name in envs_train_names]) * args.limb_obs_size) envs_train = [ utils.makeEnvWrapper(name, obs_max_len, args.seed) for name in envs_train_names ] envs_train = SubprocVecEnv(envs_train) # vectorized env # set random seeds torch.manual_seed(args.seed) np.random.seed(args.seed) # determine the maximum number of children in all the training envs if args.max_children is None: args.max_children = utils.findMaxChildren(envs_train_names, args.graphs) args.max_num_limbs = max_num_limbs # setup agent policy policy = TD3.TD3(args) # Create new training instance or load previous checkpoint ======================== if cp.has_checkpoint(exp_path, rb_path): print("*** loading checkpoint from {} ***".format(exp_path)) ( total_timesteps, episode_num, replay_buffer, num_samples, loaded_path, ) = cp.load_checkpoint(exp_path, rb_path, policy, args) print("*** checkpoint loaded from {} ***".format(loaded_path)) else: print("*** training from scratch ***") # init training vars total_timesteps = 0 episode_num = 0 num_samples = 0 # different replay buffer for each env; avoid using too much memory if there are too many envs replay_buffer = dict() if num_envs_train > args.rb_max // 1e6: for name in envs_train_names: replay_buffer[name] = utils.ReplayBuffer( max_size=args.rb_max // num_envs_train) else: for name in envs_train_names: replay_buffer[name] = utils.ReplayBuffer() # Initialize training variables ================================================ writer = SummaryWriter("%s/%s/" % (DATA_DIR, exp_name)) s = time.time() timesteps_since_saving = 0 timesteps_since_saving_model_only = 0 this_training_timesteps = 0 collect_done = True episode_timesteps_list = [0 for i in range(num_envs_train)] done_list = [True for i in range(num_envs_train)] # Start training =========================================================== model_savings_so_far = 0 while total_timesteps < args.max_timesteps: # train and log after one episode for each env if collect_done: # log updates and train policy if this_training_timesteps != 0: policy.train( replay_buffer, episode_timesteps_list, args.batch_size, args.discount, args.tau, args.policy_noise, args.noise_clip, args.policy_freq, graphs=args.graphs, envs_train_names=envs_train_names[:num_envs_train], ) # add to tensorboard display for i in range(num_envs_train): writer.add_scalar( "{}_episode_reward".format(envs_train_names[i]), episode_reward_list[i], total_timesteps, ) writer.add_scalar( "{}_episode_len".format(envs_train_names[i]), episode_timesteps_list[i], total_timesteps, ) if not args.debug: ex.log_scalar( f"{envs_train_names[i]}_episode_reward", float(episode_reward_list[i]), total_timesteps, ) ex.log_scalar( f"{envs_train_names[i]}_episode_len", float(episode_timesteps_list[i]), total_timesteps, ) if not args.debug: ex.log_scalar( "total_timesteps", float(total_timesteps), total_timesteps, ) # print to console print( "-" * 50 + "\nExpID: {}, FPS: {:.2f}, TotalT: {}, EpisodeNum: {}, SampleNum: {}, ReplayBSize: {}" .format( args.expID, this_training_timesteps / (time.time() - s), total_timesteps, episode_num, num_samples, sum([ len(replay_buffer[name].storage) for name in envs_train_names ]), )) for i in range(len(envs_train_names)): print("{} === EpisodeT: {}, Reward: {:.2f}".format( envs_train_names[i], episode_timesteps_list[i], episode_reward_list[i], )) # save model and replay buffers if timesteps_since_saving >= args.save_freq: timesteps_since_saving = 0 model_saved_path = cp.save_model( exp_path, policy, total_timesteps, episode_num, num_samples, replay_buffer, envs_train_names, args, model_name=f"model_{model_savings_so_far}.pyth", ) model_savings_so_far += 1 print("*** model saved to {} ***".format(model_saved_path)) if args.save_buffer: rb_saved_path = cp.save_replay_buffer( rb_path, replay_buffer) print("*** replay buffers saved to {} ***".format( rb_saved_path)) # reset training variables obs_list = envs_train.reset() done_list = [False for i in range(num_envs_train)] episode_reward_list = [0 for i in range(num_envs_train)] episode_timesteps_list = [0 for i in range(num_envs_train)] episode_num += num_envs_train # create reward buffer to store reward for one sub-env when it is not done episode_reward_list_buffer = [0 for i in range(num_envs_train)] # start sampling =========================================================== # sample action randomly for sometime and then according to the policy if total_timesteps < args.start_timesteps * num_envs_train: action_list = [ np.random.uniform( low=envs_train.action_space.low[0], high=envs_train.action_space.high[0], size=max_num_limbs, ) for i in range(num_envs_train) ] else: action_list = [] for i in range(num_envs_train): # dynamically change the graph structure of the modular policy policy.change_morphology(args.graphs[envs_train_names[i]]) # remove 0 padding of obs before feeding into the policy (trick for vectorized env) obs = np.array( obs_list[i][:args.limb_obs_size * len(args.graphs[envs_train_names[i]])]) policy_action = policy.select_action(obs) if args.expl_noise != 0: policy_action = (policy_action + np.random.normal( 0, args.expl_noise, size=policy_action.size)).clip( envs_train.action_space.low[0], envs_train.action_space.high[0]) # add 0-padding to ensure that size is the same for all envs policy_action = np.append( policy_action, np.array([ 0 for i in range(max_num_limbs - policy_action.size) ]), ) action_list.append(policy_action) # perform action in the environment new_obs_list, reward_list, curr_done_list, _ = envs_train.step( action_list) # record if each env has ever been 'done' done_list = [ done_list[i] or curr_done_list[i] for i in range(num_envs_train) ] for i in range(num_envs_train): # add the instant reward to the cumulative buffer # if any sub-env is done at the momoent, set the episode reward list to be the value in the buffer episode_reward_list_buffer[i] += reward_list[i] if curr_done_list[i] and episode_reward_list[i] == 0: episode_reward_list[i] = episode_reward_list_buffer[i] episode_reward_list_buffer[i] = 0 done_bool = float(curr_done_list[i]) if episode_timesteps_list[i] + 1 == args.max_episode_steps: done_bool = 0 done_list[i] = True # remove 0 padding before storing in the replay buffer (trick for vectorized env) num_limbs = len(args.graphs[envs_train_names[i]]) obs = np.array(obs_list[i][:args.limb_obs_size * num_limbs]) new_obs = np.array(new_obs_list[i][:args.limb_obs_size * num_limbs]) action = np.array(action_list[i][:num_limbs]) # insert transition in the replay buffer replay_buffer[envs_train_names[i]].add( (obs, new_obs, action, reward_list[i], done_bool)) num_samples += 1 # do not increment episode_timesteps if the sub-env has been 'done' if not done_list[i]: episode_timesteps_list[i] += 1 total_timesteps += 1 this_training_timesteps += 1 timesteps_since_saving += 1 timesteps_since_saving_model_only += 1 obs_list = new_obs_list collect_done = all(done_list) # save checkpoint after training =========================================================== model_saved_path = cp.save_model( exp_path, policy, total_timesteps, episode_num, num_samples, replay_buffer, envs_train_names, args, ) print("*** training finished and model saved to {} ***".format( model_saved_path))
def train(args): # Set up directories =========================================================== os.makedirs(DATA_DIR, exist_ok=True) os.makedirs(BUFFER_DIR, exist_ok=True) exp_name = "EXP_%04d" % (args.expID) exp_path = os.path.join(DATA_DIR, exp_name) rb_path = os.path.join(BUFFER_DIR, exp_name) os.makedirs(exp_path, exist_ok=True) os.makedirs(rb_path, exist_ok=True) # save arguments with open(os.path.join(exp_path, 'args.txt'), 'w+') as f: json.dump(args.__dict__, f, indent=2) # Retrieve MuJoCo XML files for training ======================================== envs_train_names = [] args.graphs = dict() # existing envs if not args.custom_xml: if args.predefined_order: envs_train_names = [ 'walker_7_flipped', 'walker_7_main', 'walker_6_flipped', 'walker_5_main', 'walker_4_main', 'walker_5_flipped', 'walker_3_main', 'walker_6_main', 'walker_3_flipped', 'walker_4_flipped' ] else: for morphology in args.morphologies: envs_train_names += [ name[:-4] for name in os.listdir(XML_DIR) if '.xml' in name and morphology in name ] envs_train_names.sort() total_num_envs = len(envs_train_names) train_envs = envs_train_names[:int(args.train_ratio * total_num_envs)] test_envs = envs_train_names[int(args.train_ratio * total_num_envs):] envs_train_names = train_envs for name in envs_train_names: args.graphs[name] = utils.getGraphStructure( os.path.join(XML_DIR, '{}.xml'.format(name))) # custom envs else: if os.path.isfile(args.custom_xml): assert '.xml' in os.path.basename( args.custom_xml), 'No XML file found.' name = os.path.basename(args.custom_xml) envs_train_names.append(name[:-4]) # truncate the .xml suffix args.graphs[name[:-4]] = utils.getGraphStructure(args.custom_xml) elif os.path.isdir(args.custom_xml): for name in os.listdir(args.custom_xml): if '.xml' in name: envs_train_names.append(name[:-4]) args.graphs[name[:-4]] = utils.getGraphStructure( os.path.join(args.custom_xml, name)) # envs_train_names.sort() num_envs_train = len(envs_train_names) print("#" * 50 + '\ntraining envs: {}\n'.format(envs_train_names) + "#" * 50) # Set up training env and policy ================================================ args.limb_obs_size, args.max_action = utils.registerEnvs( envs_train_names, args.max_episode_steps, args.custom_xml) max_num_limbs = max( [len(args.graphs[env_name]) for env_name in envs_train_names]) # create vectorized training env obs_max_len = max( [len(args.graphs[env_name]) for env_name in envs_train_names]) * args.limb_obs_size # envs_train = SubprocVecEnv(envs_train) # vectorized env # set random seeds torch.manual_seed(args.seed) np.random.seed(args.seed) # determine the maximum number of children in all the training envs if args.max_children is None: args.max_children = utils.findMaxChildren(envs_train_names, args.graphs) # setup agent policy policy = TD3.LifeLongTD3(args) # Create new training instance or load previous checkpoint ======================== if cp.has_checkpoint(exp_path, rb_path): print("*** loading checkpoint from {} ***".format(exp_path)) total_timesteps, episode_num, replay_buffer, num_samples, loaded_path = cp.load_checkpoint( exp_path, rb_path, policy, args) print("*** checkpoint loaded from {} ***".format(loaded_path)) else: print("*** training from scratch ***") # init training vars total_timesteps = 0 episode_num = 0 num_samples = 0 # different replay buffer for each env; avoid using too much memory if there are too many envs # Initialize training variables ================================================ writer = SummaryWriter("%s/%s/" % (DATA_DIR, exp_name)) s = time.time() # TODO: may have to change the following codes into the loop timesteps_since_saving = 0 this_training_timesteps = 0 # Start training =========================================================== for env_name in envs_train_names: print("new env: {}".format(env_name)) envs_train = [] for i in range(args.num_parallel): envs_train.append( utils.makeEnvWrapperParallel(env_name, obs_max_len, args.seed)) envs_train = SubprocVecEnv(envs_train, in_series=1) replay_buffer = utils.ReplayBuffer(max_size=args.rb_max) policy.change_morphology(args.graphs[env_name]) policy.graph = args.graphs[env_name] task_timesteps = 0 collect_done = True obs_list = envs_train.reset() done_list = [False for i in range(args.num_parallel)] episode_reward_list = [0 for i in range(args.num_parallel)] episode_timesteps_list = [0 for i in range(args.num_parallel)] # create reward buffer to store reward for one sub-env when it is not done episode_reward_list_buffer = [0 for i in range(args.num_parallel)] mean_reward = 0 this_training_timesteps = 0 while task_timesteps < args.max_timesteps: # train and log after one episode for each env if collect_done: # log updates and train policy if this_training_timesteps != 0: mean_reward = np.array(episode_reward_list).mean() if mean_reward < args.success_thres: policy.train(replay_buffer, np.array(episode_timesteps_list).sum(), args.batch_size, args.discount, args.tau, args.policy_noise, args.noise_clip, args.policy_freq, graphs=args.graphs, env_name=env_name) # add to tensorboard display writer.add_scalar( '{}_episode_mean_reward'.format(env_name), mean_reward, task_timesteps) # for i in range(args.num_parallel): # writer.add_scalar('{}_episode_reward_proc{}'.format(env_name,i), episode_reward_list[i], task_timesteps) # writer.add_scalar('{}_episode_len_proc{}'.format(env_name,i), episode_timesteps_list[i], task_timesteps) # print to console print( "-" * 50 + "\nExpID: {}, FPS: {:.2f}, TotalT: {}, taskT:{}, EpisodeNum: {}, SampleNum: {}, ReplayBSize: {}" .format(args.expID, this_training_timesteps / (time.time() - s), total_timesteps, task_timesteps, episode_num, num_samples, sum([len(replay_buffer.storage)]))) for i in range(args.num_parallel): print("{} process {} === EpisodeT: {}, Reward: {:.2f}". format(env_name, i, episode_timesteps_list[i], episode_reward_list[i])) print("mean reward {}".format(mean_reward)) this_training_timesteps = 0 s = time.time() # save model and replay buffers if timesteps_since_saving >= args.save_freq: timesteps_since_saving = 0 model_saved_path = cp.save_model_lifelong( exp_path, policy, total_timesteps, episode_num, num_samples, replay_buffer, env_name, args) print("*** model saved to {} ***".format(model_saved_path)) rb_saved_path = cp.save_replay_buffer_lifelong( rb_path, replay_buffer, env_name) print("*** replay buffers saved to {} ***".format( rb_saved_path)) # reset training variables obs_list = envs_train.reset() done_list = [False for i in range(args.num_parallel)] episode_reward_list = [0 for i in range(args.num_parallel)] episode_timesteps_list = [0 for i in range(args.num_parallel)] episode_num += args.num_parallel # create reward buffer to store reward for one sub-env when it is not done episode_reward_list_buffer = [ 0 for i in range(args.num_parallel) ] if mean_reward > args.success_thres: print( "satisfied training requirement, change to the next task" ) break # start sampling =========================================================== # sample action randomly for sometime and then according to the policy if task_timesteps < args.start_timesteps: action_list = [ np.random.uniform(low=envs_train.action_space.low[0], high=envs_train.action_space.high[0], size=max_num_limbs) for i in range(args.num_parallel) ] else: action_list = [] for i in range(args.num_parallel): # remove 0 padding of obs before feeding into the policy (trick for vectorized env) obs = np.array(obs_list[i][:args.limb_obs_size * len(args.graphs[env_name])]) policy_action = policy.select_action(obs) if args.expl_noise != 0: policy_action = (policy_action + np.random.normal( 0, args.expl_noise, size=policy_action.size)).clip( envs_train.action_space.low[0], envs_train.action_space.high[0]) # add 0-padding to ensure that size is the same for all envs policy_action = np.append( policy_action, np.array([ 0 for i in range(max_num_limbs - policy_action.size) ])) action_list.append(policy_action) # perform action in the environment new_obs_list, reward_list, curr_done_list, _ = envs_train.step( action_list) # record if each env has ever been 'done' done_list = [ done_list[i] or curr_done_list[i] for i in range(args.num_parallel) ] # record if each env has ever been 'done' # add the instant reward to the cumulative buffer for i in range(args.num_parallel): # add the instant reward to the cumulative buffer # if any sub-env is done at the momoent, set the episode reward list to be the value in the buffer episode_reward_list_buffer[i] += reward_list[i] if curr_done_list[i] and episode_reward_list[i] == 0: episode_reward_list[i] = episode_reward_list_buffer[i] episode_reward_list_buffer[i] = 0 writer.add_scalar( '{}_instant_reward_pro{}'.format(env_name, i), reward_list[i], task_timesteps) done_bool = float(curr_done_list[i]) if episode_timesteps_list[i] + 1 == args.max_episode_steps: done_bool = 0 done_list[i] = True # remove 0 padding before storing in the replay buffer (trick for vectorized env) num_limbs = len(args.graphs[env_name]) obs = np.array(obs_list[i][:args.limb_obs_size * num_limbs]) new_obs = np.array(new_obs_list[i][:args.limb_obs_size * num_limbs]) action = np.array(action_list[i][:num_limbs]) # insert transition in the replay buffer replay_buffer.add( (obs, new_obs, action, reward_list[i], done_bool)) num_samples += 1 # do not increment episode_timesteps if the sub-env has been 'done' if not done_list[i]: episode_timesteps_list[i] += 1 task_timesteps += 1 total_timesteps += 1 this_training_timesteps += 1 timesteps_since_saving += 1 obs_list = new_obs_list collect_done = all(done_list) model_saved_path = cp.save_model_lifelong(exp_path, policy, total_timesteps, episode_num, num_samples, replay_buffer, env_name, args) policy.next_task() # save checkpoint after training =========================================================== model_saved_path = cp.save_model_lifelong(exp_path, policy, total_timesteps, episode_num, num_samples, replay_buffer, env_name, args) print("*** training finished and model saved to {} ***".format( model_saved_path))