# FOR MAC - built-in mic has device ID 0, USB Audio device has device ID 2 # FOR PI - input audio has device ID 2, mic audio has device ID 3 # Open input stream source inputStream = audio.open(format=FORMAT, input_device_index=getInputDeviceID(audio), channels=CHANNELS, rate=RATE, input=True, output=False, frames_per_buffer=CHUNK, stream_callback=input_callback) # Open mic stream souce micStream = audio.open(format=FORMAT, input_device_index=getMicDeviceID(audio), channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK, stream_callback=mic_callback) inputStream.start_stream() micStream.start_stream() while inputStream.is_active(): print("Beginning listening...") time.sleep(LISTEN_SECONDS) inputStream.stop_stream() micStream.stop_stream()
def calibrate(plot=False): os.system( "amixer set PCM 80%" ) # set the internal pi volume control to 35 (somehow 74% results in 35) audio = pyaudio.PyAudio() # FOR MAC - built-in mic has device ID 0, USB Audio device has device ID 2 # FOR PI - input audio has device ID 2, mic audio has device ID 3 # Open input stream source # Open mic stream souce micStream = audio.open(format=MIC_FORMAT, input_device_index=getMicDeviceID(audio), channels=1, rate=RATE, input=True, frames_per_buffer=CHUNK, stream_callback=mic_callback) inputStream = audio.open(format=INPUT_FORMAT, input_device_index=getInputDeviceID(audio), channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK, stream_callback=input_callback) micStream.start_stream() inputStream.start_stream() sd.play(cal_array, cal_fs) sd.wait() micStream.close() audio.terminate() print("Finished listening to calibration signal...") ''' for i in range(len(micIntensityData)): micIntensityData[i] = micIntensityData[i]*0.65 ''' # get linear relationship... get min length first so dimensions match in the linear fit minLength = min(len(calibrateIntensityData), len(micIntensityData)) #scaledDownMinLength = int(0.9*minLength) r = np.corrcoef(calibrateIntensityData[0:minLength], micIntensityData[0:minLength])[1:0] print("\nr = %s\n" % (str(r))) m, b = np.polyfit(calibrateIntensityData[0:minLength], micIntensityData[0:minLength], 1) #m *= 1.1 # save M and B to calibration_parameters.json with open('calibration_parameters.json', 'w') as outfile: json.dump({'M': m, 'B': b}, outfile, sort_keys=True, indent=4) if plot: lowerBound = min(calibrateIntensityData) upperBound = max(calibrateIntensityData) print("Generating graphs...") x = np.linspace(lowerBound, upperBound) y = [] for i in range(0, len(x)): y.append(m * x[i] + b) micTimeValues = getTimeValues(RATE, CHUNK, len(micIntensityData)) calibrateTimeValues = getTimeValues(RATE, CHUNK, len(calibrateIntensityData)) """ # Mic power over time plot micIntensityFig = plt.figure(figsize=(30,4)) micIntensityFig.suptitle('Mic Intensity over Time', fontsize=14, fontweight='bold') plt.plot(micTimeValues, micIntensityData) plt.xlabel('Time (s)') plt.ylabel('Relative Fraction of Maximum Intensity') # Calibrate signal power over time plot calibrateIntensityFig = plt.figure(figsize=(30,4)) calibrateIntensityFig.suptitle('Calibrate Signal Intensity over Time', fontsize=14, fontweight='bold') plt.plot(calibrateTimeValues, calibrateIntensityData) plt.xlabel('Time (s)') plt.ylabel('Relative Fraction of Maximum Intensity') """ # Mic Pickup Power vs. Input Signal Power graph powerFig = plt.figure(figsize=(18, 6)) powerFig.suptitle('Mic Pickup Intensity vs. Input Signal Intensity', fontsize=14, fontweight='bold') powerDataPoints, = plt.plot(calibrateIntensityData[0:minLength], micIntensityData[0:minLength], 'o', color="orange", label="Intensity Data Points") bestFit, = plt.plot(x, y, 'b-', label=("Best Fit Line\ny=%.4fx+%.4f" % (m, b))) plt.xlabel('Relative Fraction of Maximum Intensity') plt.ylabel('Relative Fraction of Maximum Intensity') plt.legend(handles=[powerDataPoints, bestFit]) intensitiesFig = plt.figure(figsize=(18, 12)) intensitiesFig.suptitle('Calibration Graph', fontsize=14, fontweight='bold') # First plot mic plt.subplot(211) plt.plot(micTimeValues, micIntensityData, color="tab:blue") plt.ylabel('Microphone Pickup Intensity') # Now plot the input on a separate Subplot plt.subplot(212) plt.plot(calibrateTimeValues, calibrateIntensityData, color="tab:orange") plt.xlabel('Time (s)') plt.ylabel('System Input Intensity') print("Done!") intensitiesFig.savefig('./plots/c_mic_and_input_intensity.png') powerFig.savefig('./plots/c_calibration_graph.png') #plt.show() resetCalibrateData() return (m, b)
def calibrate(plot=False): # Begin main thread of code audio = pyaudio.PyAudio() print("DEFAULT DEVICE: ") print(audio.get_default_output_device_info()) # FOR MAC - built-in mic has device ID 0, USB Audio device has device ID 2 # FOR PI - input audio has device ID 2, mic audio has device ID 3 # Open input stream source # Open mic stream souce micStream = audio.open(format=FORMAT, input_device_index=getMicDeviceID(audio), channels=1, rate=RATE, input=True, output=True, frames_per_buffer=CHUNK, stream_callback=mic_callback) micStream.start_stream() while micStream.is_active(): print("Beginning calibration signal...") time.sleep(RECORD_SECONDS) micStream.stop_stream() micStream.close() audio.terminate() print("Finished listening to calibration signal...") m, b = np.polyfit(calibratePowerData, micPowerData[0:len(calibratePowerData)], 1) # save M and B to calibration_parameters.json with open('calibration_parameters.json', 'w') as outfile: json.dump({'M': m, 'B': b}, outfile, sort_keys=True, indent=4) if plot: lowerBound = min(calibratePowerData) upperBound = max(calibratePowerData) print("Generating graphs...") x = np.linspace(lowerBound, upperBound) y = [] for i in range(0, len(x)): y.append(m * x[i] + b) micTimeValues = getTimeValues(RATE, CHUNK, len(micPowerData)) # Mic power over time plot micPowerFig = plt.figure(figsize=(30, 4)) micPowerFig.suptitle('Mic Power over Time', fontsize=14, fontweight='bold') plt.plot(micTimeValues, micPowerData) plt.xlabel('Time (s)') plt.ylabel('UNITS') calibrateTimeValues = getTimeValues(RATE, CHUNK, len(calibratePowerData)) # Calibrate signal power over time plot calibratePowerFig = plt.figure(figsize=(30, 4)) calibratePowerFig.suptitle('Calibrate Signal Power over Time', fontsize=14, fontweight='bold') plt.plot(calibrateTimeValues, calibratePowerData) plt.xlabel('Time (s)') plt.ylabel('UNITS') # Mic Pickup Power vs. Input Signal Power graph powerFig = plt.figure(figsize=(30, 4)) powerFig.suptitle('Mic Pickup Power vs. Input Signal Power', fontsize=14, fontweight='bold') powerDataPoints, = plt.plot(calibratePowerData, micPowerData[0:len(calibratePowerData)], 'o', color="orange", label="Power Data Points") bestFit, = plt.plot(x, y, 'b-', label=("Best Fit Line\ny=%.4fx+%.4f" % (m, b))) plt.xlabel('UNITS') plt.ylabel('UNITS') plt.legend(handles=[powerDataPoints, bestFit]) print("Done!") plt.show() return (m, b)
def listen(cal_slope, cal_intercept, sensitivity): # set the M and B parameters of the calibration graph global M,B, LISTEN_ACTIVE #M = cal_slope*1.1 M = cal_slope B = cal_intercept SENSITIVITY = sensitivity CHUNK = sensitivityMap[SENSITIVITY] print("Set the system's sensitivity to %s\n" % (SENSITIVITY)) # Begin main thread of code audio = pyaudio.PyAudio() segment.begin() # FOR MAC - built-in mic has device ID 0, USB Audio device has device ID 2 # FOR PI - input audio has device ID 2, mic audio has device ID 3 # Open input stream source inputStream = audio.open(format=INPUT_FORMAT, input_device_index=getInputDeviceID(audio), channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK, stream_callback=input_callback) # Open mic stream souce micStream = audio.open(format=MIC_FORMAT, input_device_index=getMicDeviceID(audio), channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK, stream_callback=mic_callback) print("Beginning listening...") inputStream.start_stream() micStream.start_stream() LISTEN_ACTIVE = True # run until LISTEN_ACTIVE is set false by stopListening while LISTEN_ACTIVE: pass inputStream.stop_stream() micStream.stop_stream() micStream.close() inputStream.close() audio.terminate() print("Finished listening") # Power data plot micPowerTimeVals = getTimeValues(RATE, CHUNK, len(micPowerData)) expectedMicPowerTimeVals = getTimeValues(RATE/CHUNK, 1, len(expectedMicPowerData)) inputPowerTimeVals = getTimeValues(RATE/CHUNK, 1, len(inputPowerData)) micPowerFig = plt.figure(figsize=(18,6)) micPowerFig.suptitle('Mic Power & Expected Mic Power over Time', fontsize=14, fontweight='bold') micPowerPlot, = plt.plot(micPowerTimeVals, micPowerData, label="Actual Mic Power") expMicPowerPlot, = plt.plot(expectedMicPowerTimeVals, expectedMicPowerData, label="Expected Mic Power") inputPowerPlot, = plt.plot(inputPowerTimeVals, inputPowerData, label="Input Power") plt.xlabel('Time (s)') plt.ylabel('UNITS') plt.legend(handles=[micPowerPlot, expMicPowerPlot, inputPowerPlot]) # Plot of moving average of power avgMicPowerTimeVals = getTimeValues(RATE, CHUNK, len(avgMicPowerData)) avgExpectedMicPowerTimeVals = getTimeValues(RATE, CHUNK, len(avgExpectedMicPowerData)) movingAvgFig = plt.figure(figsize=(18,6)) movingAvgFig.suptitle('Moving Averages of Mic Power & Expected Mic Power over Time', fontsize=14, fontweight='bold') avgMicPowerPlot, = plt.plot(avgMicPowerTimeVals, avgMicPowerData, label="Mic Power Moving Average") avgExpMicPowerPlot, = plt.plot(avgExpectedMicPowerTimeVals, avgExpectedMicPowerData, label="Expected Mic Power Moving Average") plt.xlabel('Time (s)') plt.ylabel('UNITS') plt.legend(handles=[avgMicPowerPlot, avgExpMicPowerPlot]) # Plot of scale factor & ratio over time on same plot scaleTimeVals = getTimeValues(RATE, CHUNK, len(scaleData)) ratioTimeVals = getTimeValues(RATE, CHUNK, len(ratioData)) potTimeVals = getTimeValues(RATE, CHUNK, len(potValData)) scaleRatioFig = plt.figure(figsize=(18,18)) scaleRatioFig.suptitle('Scale Factor and Avg. Expected Mic Power to Avg Mic Power Ratio over Time', fontsize=14, fontweight='bold') # First plot ratio plt.subplot(311) plt.plot(ratioTimeVals, ratioData, color="tab:red") plt.ylabel('Ratio Magnitude') # Next plot a line on the threshold threshLine = [] for i in range (0, len(ratioTimeVals)): threshLine.append(THRESHOLD) plt.plot(ratioTimeVals, threshLine, color="gray", linestyle='dashed') # Now plot the scale on a separate Subplot plt.subplot(312) plt.plot(scaleTimeVals, scaleData, color="tab:blue") plt.xlabel('Time (s)') plt.ylabel('Scale Magnitude') plt.subplot(313) plt.plot(potTimeVals, potValData, color="tab:green") plt.xlabel('Time (s)') plt.ylabel('Potentiometer Value Magnitude') # plt.show() micPowerFig.savefig('./plots/l_intensities_over_time.png') movingAvgFig.savefig('./plots/l_moving_avg.png') scaleRatioFig.savefig('./plots/l_ratio_etc.png') resetListenData()