Esempio n. 1
0
    def forward(self, src, src_len, tgt, tgt_len, split='train'):
        
        n_batch=src.size(0)

        #Creating mask
        src_pad_mask = get_pad_mask(src, self.pad).to(self.device) #(B, S)
        tgt_pad_mask = get_pad_mask(tgt, self.pad).to(self.device) #(B, T)
        pad_mask = (src_pad_mask, tgt_pad_mask)

        attn_mask = generate_square_subsequent_mask(self.max_tgt_len)

        src = self.embed(src.to(self.device))
        tgt = self.embed(tgt.to(self.device))

        #permutation
        src = src.permute(1, 0, 2)
        tgt = tgt.permute(1, 0, 2)

        enc_output, attn = self.encoder(src, pad_mask=pad_mask)
        output, attn = self.decoder(tgt, enc_output, pad_mask=pad_mask, cross_mask=attn_mask)

        #permutation
        output = output.permute(1, 0, 2) * (self.scale ** 0.5)

        logits = F.log_softmax(self.final(output), dim=-1)
        generations = torch.argmax(logits, dim=-1)
        
        return logits, generations
Esempio n. 2
0
            def predict_word(dec_seq, src_seq, enc_output, n_active_inst, n_bm):
                src_mask = get_pad_mask(src_seq, PAD)
                dec_mask = get_pad_mask(dec_seq, PAD) & get_subsequent_mask(dec_seq)
                dec_output, *_ = self.model.decoder(dec_seq, dec_mask, enc_output, src_mask)
                                                    
                dec_output = dec_output[:, -1, :]  # Pick the last step: (bh * bm) * d_h
                word_prob = F.log_softmax(self.model.trg_word_prj(dec_output), dim=1)
                word_prob = word_prob.view(n_active_inst, n_bm, -1)

                return word_prob
Esempio n. 3
0
    def forward(self, src_seq, trg_seq):

        src_mask = get_pad_mask(src_seq, self.src_pad_idx)
        trg_mask = get_pad_mask(
            trg_seq, self.trg_pad_idx) & get_subsequent_mask(trg_seq)

        enc_output, *_ = self.encoder(src_seq, src_mask)
        dec_output, *_ = self.decoder(trg_seq, trg_mask, enc_output, src_mask)
        seq_logit = self.trg_word_prj(dec_output) * self.x_logit_scale

        # return seq_logit.view(-1, seq_logit.size(2))
        return seq_logit
Esempio n. 4
0
    def forward(self, inputs):

        padding_mask = get_pad_mask(inputs, pad_idx=self.pad_idx)
        enc_output = self.dropout(self.pos_enc(self.word_emb(inputs)))

        for enc_layer in self.layers:
            enc_output = enc_layer(enc_output, padding_mask)

        enc_output = self.linear(enc_output)
        enc_output = self.layer_norm(enc_output)

        return enc_output
Esempio n. 5
0
    def generate_batch(self, src_seq):
        ''' Translation work in one batch '''

        def get_inst_idx_to_tensor_position_map(inst_idx_list):
            ''' Indicate the position of an instance in a tensor. '''
            return {inst_idx: tensor_position for tensor_position, inst_idx in enumerate(inst_idx_list)}

        def collect_active_part(beamed_tensor, curr_active_inst_idx, n_prev_active_inst, n_bm):
            ''' Collect tensor parts associated to active instances. '''

            _, *d_hs = beamed_tensor.size()
            n_curr_active_inst = len(curr_active_inst_idx)
            new_shape = (n_curr_active_inst * n_bm, *d_hs)

            beamed_tensor = beamed_tensor.view(n_prev_active_inst, -1)
            beamed_tensor = beamed_tensor.index_select(0, curr_active_inst_idx)
            beamed_tensor = beamed_tensor.view(*new_shape)

            return beamed_tensor

        def collate_active_info(
                src_seq, src_enc, inst_idx_to_position_map, active_inst_idx_list):
            # Sentences which are still active are collected,
            # so the decoder will not run on completed sentences.
            n_prev_active_inst = len(inst_idx_to_position_map)
            active_inst_idx = [inst_idx_to_position_map[k] for k in active_inst_idx_list]
            active_inst_idx = torch.LongTensor(active_inst_idx).to(self.device)

            active_src_seq = collect_active_part(src_seq, active_inst_idx, n_prev_active_inst, n_bm)
            active_src_enc = collect_active_part(src_enc, active_inst_idx, n_prev_active_inst, n_bm)
            active_inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(active_inst_idx_list)

            return active_src_seq, active_src_enc, active_inst_idx_to_position_map

        def beam_decode_step(
                inst_dec_beams, len_dec_seq, src_seq, enc_output, inst_idx_to_position_map, n_bm):
            ''' Decode and update beam status, and then return active beam idx '''

            def prepare_beam_dec_seq(inst_dec_beams, len_dec_seq):
                dec_partial_seq = [b.get_current_state() for b in inst_dec_beams if not b.done]
                dec_partial_seq = torch.stack(dec_partial_seq).to(self.device)
                dec_partial_seq = dec_partial_seq.view(-1, len_dec_seq)
                return dec_partial_seq

            def predict_word(dec_seq, src_seq, enc_output, n_active_inst, n_bm):
                src_mask = get_pad_mask(src_seq, PAD)
                dec_mask = get_pad_mask(dec_seq, PAD) & get_subsequent_mask(dec_seq)
                dec_output, *_ = self.model.decoder(dec_seq, dec_mask, enc_output, src_mask)
                                                    
                dec_output = dec_output[:, -1, :]  # Pick the last step: (bh * bm) * d_h
                word_prob = F.log_softmax(self.model.trg_word_prj(dec_output), dim=1)
                word_prob = word_prob.view(n_active_inst, n_bm, -1)

                return word_prob

            def collect_active_inst_idx_list(inst_beams, word_prob, inst_idx_to_position_map):
                active_inst_idx_list = []
                for inst_idx, inst_position in inst_idx_to_position_map.items():
                    is_inst_complete = inst_beams[inst_idx].advance(word_prob[inst_position])
                    if not is_inst_complete:
                        active_inst_idx_list += [inst_idx]

                return active_inst_idx_list

            n_active_inst = len(inst_idx_to_position_map)

            dec_seq = prepare_beam_dec_seq(inst_dec_beams, len_dec_seq)
            # dec_pos = prepare_beam_dec_pos(len_dec_seq, n_active_inst, n_bm)
            word_prob = predict_word(dec_seq, src_seq, enc_output, n_active_inst, n_bm)

            # Update the beam with predicted word prob information and collect incomplete instances
            active_inst_idx_list = collect_active_inst_idx_list(
                inst_dec_beams, word_prob, inst_idx_to_position_map)

            return active_inst_idx_list

        def collect_hypothesis_and_scores(inst_dec_beams, n_best):
            all_hyp, all_scores = [], []
            for inst_idx in range(len(inst_dec_beams)):
                scores, tail_idxs = inst_dec_beams[inst_idx].sort_scores()
                all_scores += [scores[:n_best]]

                hyps = [inst_dec_beams[inst_idx].get_hypothesis(i) for i in tail_idxs[:n_best]]
                all_hyp += [hyps]
            return all_hyp, all_scores

        with torch.no_grad():
            #-- Encode
            # src_seq, src_pos = src_seq.to(self.device), src_pos.to(self.device)
            # src_enc, *_ = self.model.encoder(src_seq, src_pos)
            src_mask = get_pad_mask(src_seq, PAD)
            # trg_mask = get_pad_mask(trg_seq, PAD) & get_subsequent_mask(trg_seq)

            src_seq = src_seq.to(self.device)
            src_enc, *_ = self.model.encoder(src_seq, src_mask)

            #-- Repeat data for beam search
            n_bm = self.beam_size
            n_inst, len_s, d_h = src_enc.size()
            src_seq = src_seq.repeat(1, n_bm).view(n_inst * n_bm, len_s)
            src_enc = src_enc.repeat(1, n_bm, 1).view(n_inst * n_bm, len_s, d_h)

            #-- Prepare beams
            inst_dec_beams = [Beam(n_bm, device=self.device) for _ in range(n_inst)]

            #-- Bookkeeping for active or not
            active_inst_idx_list = list(range(n_inst))
            inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(active_inst_idx_list)

            #-- Decode
            for len_dec_seq in range(1, self.max_token_seq_len + 1):

                active_inst_idx_list = beam_decode_step(
                    inst_dec_beams, len_dec_seq, src_seq, src_enc, inst_idx_to_position_map, n_bm)

                if not active_inst_idx_list:
                    break  # all instances have finished their path to <EOS>

                src_seq, src_enc, inst_idx_to_position_map = collate_active_info(
                    src_seq, src_enc, inst_idx_to_position_map, active_inst_idx_list)

        batch_hyp, batch_scores = collect_hypothesis_and_scores(inst_dec_beams, self.n_best)

        return batch_hyp, batch_scores
Esempio n. 6
0
def encoder(encoder_model, encode_input_ids, pad_idx):
    encode_attention_mask = get_pad_mask(encode_input_ids, pad_idx=pad_idx)
    encode_outputs, *_ = encoder_model(encode_input_ids, encode_attention_mask)

    return encode_outputs, encode_attention_mask