Esempio n. 1
0
    def train_calibration(self, logits, labels):
        """Train a calibrator given logits and labels.

        Args:
            logits: A sequence of dimension (n, k) where n is the number of
                data points, and k is the number of classes, representing
                the output probabilities/confidences of the uncalibrated
                model.
            labels: A sequence of length n, where n is the number of data points,
                representing the ground truth label for each data point.
        """
        assert(len(logits) >= self._num_calibration)
        logits = np.array(logits)
        self._k = logits.shape[1]  # Number of classes.
        assert self._k == np.max(labels) - np.min(labels) + 1
        labels_one_hot = utils.get_labels_one_hot(np.array(labels), self._k)
        assert labels_one_hot.shape == logits.shape
        self._platts = []
        self._calibrators = []
        for c in range(self._k):
            # For each class c, get the probabilities the model output for that class, and whether
            # the data point was actually class c, or not.
            probs_c = logits[:, c]
            labels_c = labels_one_hot[:, c]
            platt_c = utils.get_platt_scaler(probs_c, labels_c)
            self._platts.append(platt_c)
            platt_probs_c = platt_c(probs_c)
            bins = utils.get_equal_bins(platt_probs_c, num_bins=self._num_bins)
            calibrator_c = utils.get_discrete_calibrator(platt_probs_c, bins)
            self._calibrators.append(calibrator_c)
Esempio n. 2
0
 def train_calibration(self, logits, labels):
     assert(len(logits) >= self._num_calibration)
     predictions = utils.get_top_predictions(logits)
     probs = utils.get_top_probs(logits)
     correct = (predictions == labels)
     self._platt = utils.get_platt_scaler(
         probs, correct)
     platt_probs = self._platt(probs)
     bins = utils.get_equal_bins(platt_probs, num_bins=self._num_bins)
     self._discrete_calibrator = utils.get_discrete_calibrator(
         platt_probs, bins)
def lower_bound_experiment(logits,
                           labels,
                           calibration_data_size,
                           bin_data_size,
                           bins_list,
                           save_name='cmp_est',
                           binning_func=utils.get_equal_bins,
                           lp=2):
    # Shuffle the logits and labels.
    indices = np.random.choice(list(range(len(logits))),
                               size=len(logits),
                               replace=False)
    logits = [logits[i] for i in indices]
    labels = [labels[i] for i in indices]
    predictions = utils.get_top_predictions(logits)
    probs = utils.get_top_probs(logits)
    correct = (predictions == labels)
    print('num_correct: ', sum(correct))
    # Platt scale on first chunk of data
    platt = utils.get_platt_scaler(probs[:calibration_data_size],
                                   correct[:calibration_data_size])
    platt_probs = platt(probs)
    lower, middle, upper = [], [], []
    for num_bins in bins_list:
        bins = binning_func(platt_probs[:calibration_data_size +
                                        bin_data_size],
                            num_bins=num_bins)
        verification_probs = platt_probs[calibration_data_size +
                                         bin_data_size:]
        verification_correct = correct[calibration_data_size + bin_data_size:]
        verification_data = list(zip(verification_probs, verification_correct))

        def estimator(data):
            binned_data = utils.bin(data, bins)
            return utils.plugin_ce(binned_data, power=lp)

        print('estimate: ', estimator(verification_data))
        estimate_interval = utils.bootstrap_uncertainty(verification_data,
                                                        estimator,
                                                        num_samples=1000)
        lower.append(estimate_interval[0])
        middle.append(estimate_interval[1])
        upper.append(estimate_interval[2])
        print('interval: ', estimate_interval)
    lower_errors = np.array(middle) - np.array(lower)
    upper_errors = np.array(upper) - np.array(middle)
    plt.clf()
    font = {'family': 'normal', 'size': 18}
    rc('font', **font)
    plt.errorbar(bins_list,
                 middle,
                 yerr=[lower_errors, upper_errors],
                 barsabove=True,
                 fmt='none',
                 color='black',
                 capsize=4)
    plt.scatter(bins_list, middle, color='black')
    plt.xlabel(r"No. of bins")
    if lp == 2:
        plt.ylabel("Calibration error")
    else:
        plt.ylabel("L%d Calibration error" % lp)
    plt.xscale('log', basex=2)
    ax = plt.gca()
    ax.spines['right'].set_visible(False)
    ax.spines['top'].set_visible(False)
    ax.yaxis.set_ticks_position('left')
    ax.xaxis.set_ticks_position('bottom')
    plt.tight_layout()
    plt.savefig(save_name)
Esempio n. 4
0
def calibrate_marginals_experiment(logits, labels, k):
    num_calib = 3000
    num_bin = 3000
    num_cert = 4000
    assert (logits.shape[0] == num_calib + num_bin + num_cert)
    num_bins = 100
    bootstrap_samples = 100
    # First split by label? To ensure equal class numbers? Do this later.
    labels = utils.get_labels_one_hot(labels[:, 0], k)
    mse = np.mean(np.square(labels - logits))
    print('original mse is ', mse)
    calib_logits = logits[:num_calib, :]
    calib_labels = labels[:num_calib, :]
    bin_logits = logits[num_calib:num_calib + num_bin, :]
    bin_labels = labels[num_calib:num_calib + num_bin, :]
    cert_logits = logits[num_calib + num_bin:, :]
    cert_labels = labels[num_calib + num_bin:, :]
    mses = []
    unbiased_ces = []
    biased_ces = []
    std_unbiased_ces = []
    std_biased_ces = []
    for num_bins in range(10, 21, 10):
        # Train a platt scaler and binner.
        platts = []
        platt_binners_equal_points = []
        for l in range(k):
            platt_l = utils.get_platt_scaler(calib_logits[:, l],
                                             calib_labels[:, l])
            platts.append(platt_l)
            cal_logits_l = platt_l(calib_logits[:, l])
            # bins_l = utils.get_equal_bins(cal_logits_l, num_bins=num_bins)
            # Get
            # bins_l = utils.get_equal_prob_bins(num_bins=num_bins)
            bins_l = [0.0012, 0.05, 0.01, 0.95, 0.985, 1.0]
            cal_bin_logits_l = platt_l(bin_logits[:, l])
            platt_binner_l = utils.get_discrete_calibrator(
                cal_bin_logits_l, bins_l)
            platt_binners_equal_points.append(platt_binner_l)

        # Write a function that takes data and outputs the mse, ce
        def get_mse_ce(logits, labels, ce_est):
            mses = []
            ces = []
            logits = np.array(logits)
            labels = np.array(labels)
            for l in range(k):
                cal_logits_l = platt_binners_equal_points[l](platts[l](
                    logits[:, l]))
                data = list(zip(cal_logits_l, labels[:, l]))
                bins_l = utils.get_discrete_bins(cal_logits_l)
                binned_data = utils.bin(data, bins_l)
                # probs = platts[l](logits[:, l])
                # for p in [1, 5, 10, 20, 50, 85, 88.5, 92, 94, 96, 98, 100]:
                #     print(np.percentile(probs, p))
                # import time
                # time.sleep(100)
                # print('lengths')
                # print([len(d) for d in binned_data])
                ces.append(ce_est(binned_data))
                mses.append(
                    np.mean([(prob - label)**2 for prob, label in data]))
            return np.mean(mses), np.mean(ces)

        def plugin_ce_squared(data):
            logits, labels = zip(*data)
            return get_mse_ce(logits, labels,
                              lambda x: utils.plugin_ce(x)**2)[1]

        def mse(data):
            logits, labels = zip(*data)
            return get_mse_ce(logits, labels,
                              lambda x: utils.plugin_ce(x)**2)[0]

        def unbiased_ce_squared(data):
            logits, labels = zip(*data)
            return get_mse_ce(logits, labels,
                              utils.improved_unbiased_square_ce)[1]

        mse, improved_unbiased_ce = get_mse_ce(
            cert_logits, cert_labels, utils.improved_unbiased_square_ce)
        mse, biased_ce = get_mse_ce(cert_logits, cert_labels,
                                    lambda x: utils.plugin_ce(x)**2)
        mses.append(mse)
        unbiased_ces.append(improved_unbiased_ce)
        biased_ces.append(biased_ce)
        print('biased ce: ', np.sqrt(biased_ce))
        print('mse: ', mse)
        print('improved ce: ', np.sqrt(improved_unbiased_ce))
        data = list(zip(list(cert_logits), list(cert_labels)))
        std_biased_ces.append(
            utils.bootstrap_std(data,
                                plugin_ce_squared,
                                num_samples=bootstrap_samples))
        std_unbiased_ces.append(
            utils.bootstrap_std(data,
                                unbiased_ce_squared,
                                num_samples=bootstrap_samples))

    std_multiplier = 1.3  # For one sided 90% confidence interval.
    upper_unbiased_ces = list(
        map(lambda p: np.sqrt(p[0] + std_multiplier * p[1]),
            zip(unbiased_ces, std_unbiased_ces)))
    upper_biased_ces = list(
        map(lambda p: np.sqrt(p[0] + std_multiplier * p[1]),
            zip(biased_ces, std_biased_ces)))

    # Get points on the Pareto curve, and plot them.
    def get_pareto_points(data):
        pareto_points = []

        def dominated(p1, p2):
            return p1[0] >= p2[0] and p1[1] >= p2[1]

        for datum in data:
            num_dominated = sum(map(lambda x: dominated(datum, x), data))
            if num_dominated == 1:
                pareto_points.append(datum)
        return pareto_points

    print(
        get_pareto_points(
            list(zip(upper_unbiased_ces, mses, list(range(5, 101, 5))))))
    print(
        get_pareto_points(
            list(zip(upper_biased_ces, mses, list(range(5, 101, 5))))))
    plot_unbiased_ces, plot_unbiased_mses = zip(
        *get_pareto_points(list(zip(upper_unbiased_ces, mses))))
    plot_biased_ces, plot_biased_mses = zip(
        *get_pareto_points(list(zip(upper_biased_ces, mses))))
    plt.title("MSE vs Calibration Error")
    plt.scatter(plot_unbiased_ces,
                plot_unbiased_mses,
                c='red',
                marker='o',
                label='Ours')
    plt.scatter(plot_biased_ces,
                plot_biased_mses,
                c='blue',
                marker='s',
                label='Plugin')
    plt.legend(loc='upper left')
    plt.ylim(0.0, 0.013)
    plt.xlabel("L2 Calibration Error")
    plt.ylabel("Mean-Squared Error")
    plt.show()
Esempio n. 5
0
	plt.yticks([0, 1])
	plt.xticks([0, 0.5, 1])
	ax = plt.gca()
	ax.spines['right'].set_visible(False)
	ax.spines['top'].set_visible(False)
	ax.yaxis.set_ticks_position('left')
	ax.xaxis.set_ticks_position('bottom')
	ax.set_ylim([-0.05, 1.05])

	# Set up points.
	X = np.arange(1.0 / 18, 1.0, 1.0 / 9)
	Y = [0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0]
	plt.scatter(X, Y, marker='x', s=40, c='black')

	# Add Platt curve.
	platt_scaler = utils.get_platt_scaler(X, Y)
	finer_x = np.arange(0.0, 1.0, 0.01)
	platt_finer_y = platt_scaler(finer_x)
	if calibrator == _PLATT_SCALING:
		plt.plot(finer_x, platt_finer_y, c='red')
	elif calibrator == _VAR_RED_BINNING:
		plt.plot(finer_x, platt_finer_y, c='gray')

	# Add bin lines.
	if calibrator == _VAR_RED_BINNING or calibrator == _HIST_BINNING:
		plt.axvline(x=1/3.0, linestyle='--', linewidth=2, c='gray')
		plt.axvline(x=2/3.0, linestyle='--', linewidth=2, c='gray')

	# Add platt values.
	platt_y = platt_scaler(X)
	if calibrator == _VAR_RED_BINNING:
def compare_estimators(logits,
                       labels,
                       platt_data_size,
                       bin_data_size,
                       num_bins,
                       ver_base_size=2000,
                       ver_size_increment=1000,
                       num_resamples=100,
                       save_name='cmp_est'):
    # Convert logits to prediction, probs.
    predictions = utils.get_top_predictions(logits)
    probs = utils.get_top_probs(logits)
    correct = (predictions == labels)
    # Platt scale on first chunk of data
    platt = utils.get_platt_scaler(probs[:platt_data_size],
                                   correct[:platt_data_size])
    platt_probs = platt(probs)
    estimator_names = ['biased', 'unbiased']
    estimators = [
        lambda x: utils.plugin_ce(x)**2, utils.improved_unbiased_square_ce
    ]

    bins = utils.get_equal_bins(platt_probs[:platt_data_size + bin_data_size],
                                num_bins=num_bins)
    binner = utils.get_discrete_calibrator(
        platt_probs[platt_data_size:platt_data_size + bin_data_size], bins)
    verification_probs = binner(platt_probs[platt_data_size + bin_data_size:])
    verification_correct = correct[platt_data_size + bin_data_size:]
    verification_data = list(zip(verification_probs, verification_correct))
    verification_sizes = list(
        range(ver_base_size,
              len(verification_probs) + 1, ver_size_increment))
    # We want to compare the two estimators when varying the number of samples.
    # However, a single point of comparison does not tell us much about the estimators.
    # So we use resampling - we resample from the test set many times, and run the estimators
    # on the resamples. We stores these values. This gives us a sense of the range of values
    # the estimator might output.
    # So estimates[i][j][k] stores the estimate when using estimator i, with verification_sizes[j]
    # samples, in the k-th resampling.
    estimates = np.zeros(
        (len(estimators), len(verification_sizes), num_resamples))
    # We also store the certified estimates. These represent the upper bounds we get using
    # each estimator. They are computing using the std-dev of the estimator estimated by
    # Bootstrap.
    cert_estimates = np.zeros(
        (len(estimators), len(verification_sizes), num_resamples))
    for ver_idx, verification_size in zip(range(len(verification_sizes)),
                                          verification_sizes):
        for k in range(num_resamples):
            # Resample
            indices = np.random.choice(list(range(len(verification_data))),
                                       size=verification_size,
                                       replace=True)
            cur_verification_data = [verification_data[i] for i in indices]
            cur_verification_probs = [verification_probs[i] for i in indices]
            bins = utils.get_discrete_bins(cur_verification_probs)
            # Compute estimates for each estimator.
            for i in range(len(estimators)):

                def estimator(data):
                    binned_data = utils.bin(data, bins)
                    return estimators[i](binned_data)

                cur_estimate = estimator(cur_verification_data)
                estimates[i][ver_idx][k] = cur_estimate
                # cert_resampling_estimates[j].append(
                # 	cur_estimate + utils.bootstrap_std(cur_verification_data, estimator, num_samples=20))

    estimates = np.sort(estimates, axis=-1)
    lower_bound = int(0.1 * num_resamples)
    median = int(0.5 * num_resamples)
    upper_bound = int(0.9 * num_resamples)
    lower_estimates = estimates[:, :, lower_bound]
    upper_estimates = estimates[:, :, upper_bound]
    median_estimates = estimates[:, :, median]

    # We can also compute the MSEs of the estimator.
    bins = utils.get_discrete_bins(verification_probs)
    true_calibration = utils.plugin_ce(utils.bin(verification_data, bins))**2
    print(true_calibration)
    print(np.sqrt(np.mean(estimates[1, -1, :])))
    errors = np.abs(estimates - true_calibration)
    accumulated_errors = np.mean(errors, axis=-1)
    error_bars_90 = 1.645 * np.std(errors, axis=-1) / np.sqrt(num_resamples)
    print(accumulated_errors)
    plt.errorbar(verification_sizes,
                 accumulated_errors[0],
                 yerr=[error_bars_90[0], error_bars_90[0]],
                 barsabove=True,
                 color='red',
                 capsize=4,
                 label='plugin')
    plt.errorbar(verification_sizes,
                 accumulated_errors[1],
                 yerr=[error_bars_90[1], error_bars_90[1]],
                 barsabove=True,
                 color='blue',
                 capsize=4,
                 label='debiased')
    plt.ylabel("Mean-Squared-Error")
    plt.xlabel("Number of Samples")
    plt.legend(loc='upper right')
    plt.show()

    plt.ylabel("Number of estimates")
    plt.xlabel("Absolute deviation from ground truth")
    bins = np.linspace(np.min(errors[:, 0, :]), np.max(errors[:, 0, :]), 40)
    plt.hist(errors[0][0], bins, alpha=0.5, label='plugin')
    plt.hist(errors[1][0], bins, alpha=0.5, label='debiased')
    plt.legend(loc='upper right')
    plt.gca().yaxis.set_major_formatter(PercentFormatter(xmax=num_resamples))
    plt.show()
Esempio n. 7
0
 def train_calibration(self, zs, ys):
     self._platt = utils.get_platt_scaler(zs, ys)
Esempio n. 8
0
 def train_calibration(self, zs, ys):
     self._platt = utils.get_platt_scaler(zs, ys)
     platt_probs = self._platt(zs)
     bins = utils.get_equal_bins(platt_probs, num_bins=self._num_bins)
     self._discrete_calibrator = utils.get_discrete_calibrator(platt_probs, bins)