Esempio n. 1
0
parser.add_argument('--model',
                    default="MobileNetV2_skip",
                    help='MobileNetV2_skip')
args = parser.parse_args()

from models.ilsvrc import mobilenetv2_skip, mobilenetv2
#from models.cifar100 import mobilenetv2_skip
dic_model = {'MobileNetV2_skip': mobilenetv2_skip.MobileNetV2_skip}

if args.model not in dic_model:
    print("The model is currently not supported")
    sys.exit()

trainloader = utils.get_traindata('ILSVRC2012',
                                  args.dataset_path,
                                  batch_size=args.batch_size,
                                  download=True,
                                  num_workers=16)
testloader = utils.get_testdata('ILSVRC2012',
                                args.dataset_path,
                                batch_size=args.batch_size,
                                num_workers=16)

#args.visible_device sets which cuda devices to be used"
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.visible_device
device = 'cuda'


# parallelize
class MyDataParallel(nn.DataParallel):
Esempio n. 2
0
                    help='A path to dataset directory')
parser.add_argument('--model',
                    default="MobileNetV2_skip",
                    help='MobileNetV2_skip')
args = parser.parse_args()

from models.cifar100 import mobilenetv2_skip
#from models.cifar100 import mobilenetv2_skip
dic_model = {'MobileNetV2_skip': mobilenetv2_skip.MobileNetV2_skip}

if args.model not in dic_model:
    print("The model is currently not supported")
    sys.exit()

trainloader = utils.get_traindata('CIFAR100',
                                  args.dataset_path,
                                  batch_size=args.batch_size,
                                  download=True)
testloader = utils.get_testdata('CIFAR100',
                                args.dataset_path,
                                batch_size=args.batch_size)

#args.visible_device sets which cuda devices to be used"
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.visible_device
device = 'cuda'

net = dic_model[args.model](num_classes=100)
net = net.to(device)

#CrossEntropyLoss for accuracy loss criterion
criterion = nn.CrossEntropyLoss()