def main():

    import argparse
    parser = argparse.ArgumentParser(
        description="imsitu VSRL. Training, evaluation and prediction.")
    parser.add_argument("--gpuid",
                        default=-1,
                        help="put GPU id > -1 in GPU mode",
                        type=int)
    #parser.add_argument("--command", choices = ["train", "eval", "resume", 'predict'], required = True)
    parser.add_argument('--resume_training',
                        action='store_true',
                        help='Resume training from the model [resume_model]')
    parser.add_argument('--resume_model',
                        type=str,
                        default='',
                        help='The model we resume')
    parser.add_argument('--verb_module',
                        type=str,
                        default='',
                        help='pretrained verb module')
    parser.add_argument('--train_role',
                        action='store_true',
                        help='cnn fix, verb fix, role train from the scratch')
    parser.add_argument(
        '--finetune_verb',
        action='store_true',
        help='cnn fix, verb finetune, role train from the scratch')
    parser.add_argument(
        '--finetune_cnn',
        action='store_true',
        help='cnn finetune, verb finetune, role train from the scratch')
    parser.add_argument('--output_dir',
                        type=str,
                        default='./trained_models',
                        help='Location to output the model')
    #todo: train role module separately with gt verbs

    args = parser.parse_args()

    batch_size = 640
    #lr = 5e-6
    lr = 0.0001
    lr_max = 5e-4
    lr_gamma = 0.1
    lr_step = 25
    clip_norm = 50
    weight_decay = 1e-4
    n_epoch = 500
    n_worker = 3

    dataset_folder = 'imSitu'
    imgset_folder = 'resized_256'

    print(
        'model spec :, mac net v pred for training and loss calc normalizing from only matching role count '
    )

    train_set = json.load(open(dataset_folder + "/train.json"))
    encoder = imsitu_encoder(train_set)

    model = mac_model_with_verb.E2ENetwork(encoder, args.gpuid)

    # To group up the features
    cnn_features, verb_features, role_features = utils.group_features_single(
        model)

    train_set = imsitu_loader(imgset_folder, train_set, encoder,
                              model.train_preprocess())

    train_loader = torch.utils.data.DataLoader(train_set,
                                               batch_size=64,
                                               shuffle=True,
                                               num_workers=n_worker)

    dev_set = json.load(open(dataset_folder + "/dev.json"))
    dev_set = imsitu_loader(imgset_folder, dev_set, encoder,
                            model.dev_preprocess())
    dev_loader = torch.utils.data.DataLoader(dev_set,
                                             batch_size=64,
                                             shuffle=True,
                                             num_workers=n_worker)

    traindev_set = json.load(open(dataset_folder + "/dev.json"))
    traindev_set = imsitu_loader(imgset_folder, traindev_set, encoder,
                                 model.dev_preprocess())
    traindev_loader = torch.utils.data.DataLoader(traindev_set,
                                                  batch_size=8,
                                                  shuffle=True,
                                                  num_workers=n_worker)

    utils.set_trainable(model, False)
    if args.train_role:
        print('CNN fix, Verb fix, train role from the scratch from: {}'.format(
            args.verb_module))
        args.train_all = False
        if len(args.verb_module) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.verb_module, [model.conv, model.verb],
                       ['conv', 'verb'])
        optimizer_select = 1
        model_name = 'cfx_vfx_rtrain'

    elif args.finetune_verb:
        print('CNN fix, Verb finetune, train role from the scratch from: {}'.
              format(args.verb_module))
        args.train_all = True
        if len(args.verb_module) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.verb_module, [model.conv, model.verb],
                       ['conv', 'verb'])
        optimizer_select = 2
        model_name = 'cfx_vft_rtrain'

    elif args.finetune_cnn:
        print(
            'CNN finetune, Verb finetune, train role from the scratch from: {}'
            .format(args.verb_module))
        args.train_all = True
        if len(args.verb_module) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.verb_module, [model.conv, model.verb],
                       ['conv', 'verb'])
        optimizer_select = 3
        model_name = 'cft_vft_rtrain'

    elif args.resume_training:
        print('Resume training from: {}'.format(args.resume_model))
        args.train_all = True
        if len(args.resume_model) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.resume_model, [model])
        optimizer_select = 0
        model_name = 'resume_all'
    else:
        print('Training from the scratch.')
        optimizer_select = 0
        args.train_all = True
        model_name = 'train_full'

    optimizer = utils.get_optimizer_single(lr, weight_decay, optimizer_select,
                                           cnn_features, verb_features,
                                           role_features)

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)

    if args.gpuid >= 0:
        #print('GPU enabled')
        model.cuda()
    '''optimizer = torch.optim.Adam([{'params': model.conv.parameters(), 'lr': 5e-5},
                                  {'params': model.verb.parameters(), 'lr': 5e-5},
                                  {'params': model.role_labeller.parameters()}],
                                 lr=1e-3)'''

    #optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
    #scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=lr_step, gamma=lr_gamma)
    #gradient clipping, grad check
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)

    print('Model training started!')
    train(model, train_loader, dev_loader, traindev_loader, optimizer,
          scheduler, n_epoch, args.output_dir, encoder, args.gpuid, clip_norm,
          lr_max, model_name, args)
def main():

    import argparse
    parser = argparse.ArgumentParser(description="imsitu VSRL. Training, evaluation and prediction.")
    parser.add_argument("--gpuid", default=-1, help="put GPU id > -1 in GPU mode", type=int)
    #parser.add_argument("--command", choices = ["train", "eval", "resume", 'predict'], required = True)
    parser.add_argument('--resume_training', action='store_true', help='Resume training from the model [resume_model]')
    parser.add_argument('--resume_model', type=str, default='', help='The model we resume')
    parser.add_argument('--verb_module', type=str, default='', help='pretrained verb module')
    parser.add_argument('--train_role', action='store_true', help='cnn fix, verb fix, role train from the scratch')
    parser.add_argument('--finetune_verb', action='store_true', help='cnn fix, verb finetune, role train from the scratch')
    parser.add_argument('--finetune_cnn', action='store_true', help='cnn finetune, verb finetune, role train from the scratch')
    parser.add_argument('--output_dir', type=str, default='./trained_models', help='Location to output the model')
    parser.add_argument('--evaluate', action='store_true', help='Only use the testing mode')
    parser.add_argument('--test', action='store_true', help='Only use the testing mode')
    #todo: train role module separately with gt verbs

    args = parser.parse_args()

    batch_size = 640
    #lr = 5e-6
    lr = 0.0001
    lr_max = 5e-4
    lr_gamma = 0.1
    lr_step = 25
    clip_norm = 50
    weight_decay = 1e-4
    n_epoch = 500
    n_worker = 3

    dataset_folder = 'imsitu_data'
    imgset_folder = 'of500_images_resized'

    print('model spec :, mac net v nlp role q. steps 5 with verb')

    train_set = json.load(open(dataset_folder + "/train.json"))
    imsitu_roleq = json.load(open("imsitu_data/imsitu_questions.json"))
    encoder = imsitu_encoder(train_set, imsitu_roleq)

    model = mac_vsrl_roleq.E2ENetwork(encoder, args.gpuid)

    # To group up the features
    cnn_features, verb_features, role_features = utils.group_features_single(model)

    train_set = imsitu_loader_roleq(imgset_folder, train_set, encoder, model.train_preprocess())

    train_loader = torch.utils.data.DataLoader(train_set, batch_size=4, shuffle=True, num_workers=n_worker)

    dev_set = json.load(open(dataset_folder +"/dev.json"))
    dev_set = imsitu_loader_roleq(imgset_folder, dev_set, encoder, model.dev_preprocess())
    dev_loader = torch.utils.data.DataLoader(dev_set, batch_size=64, shuffle=True, num_workers=n_worker)

    test_set = json.load(open(dataset_folder +"/test.json"))
    test_set = imsitu_loader_roleq(imgset_folder, test_set, encoder, model.dev_preprocess())
    test_loader = torch.utils.data.DataLoader(test_set, batch_size=64, shuffle=True, num_workers=n_worker)

    traindev_set = json.load(open(dataset_folder +"/dev.json"))
    traindev_set = imsitu_loader_roleq(imgset_folder, traindev_set, encoder, model.dev_preprocess())
    traindev_loader = torch.utils.data.DataLoader(traindev_set, batch_size=8, shuffle=True, num_workers=n_worker)

    utils.set_trainable(model, False)
    if args.train_role:
        print('CNN fix, Verb fix, train role from the scratch from: {}'.format(args.verb_module))
        args.train_all = False
        if len(args.verb_module) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.verb_module, [model.conv, model.verb], ['conv', 'verb'])
        optimizer_select = 1
        model_name = 'cfx_vfx_rtrain'

    elif args.finetune_verb:
        print('CNN fix, Verb finetune, train role from the scratch from: {}'.format(args.verb_module))
        args.train_all = True
        if len(args.verb_module) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.verb_module, [model.conv, model.verb], ['conv', 'verb'])
        optimizer_select = 2
        model_name = 'cfx_vft_rtrain'

    elif args.finetune_cnn:
        print('CNN finetune, Verb finetune, train role from the scratch from: {}'.format(args.verb_module))
        args.train_all = True
        if len(args.verb_module) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.verb_module, [model.conv, model.verb], ['conv', 'verb'])
        optimizer_select = 3
        model_name = 'cft_vft_rtrain'

    elif args.resume_training:
        print('Resume training from: {}'.format(args.resume_model))
        args.train_all = True
        if len(args.resume_model) == 0:
            raise Exception('[pretrained verb module] not specified')
        utils.load_net(args.resume_model, [model])
        optimizer_select = 0
        model_name = 'resume_all'
    else:
        print('Training from the scratch.')
        optimizer_select = 0
        args.train_all = True
        model_name = 'train_full'

    optimizer = utils.get_optimizer_single(lr,weight_decay,optimizer_select,
                                           cnn_features, verb_features, role_features)

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)

    if args.gpuid >= 0:
        #print('GPU enabled')
        model.cuda()

    optimizer = torch.optim.Adam([{'params': model.conv.parameters(), 'lr': 5e-5},
                                  {'params': model.verb.parameters()},
                                  {'params': model.role_labeller.parameters()}],
                                 lr=1e-3)

    #optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
    #scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=lr_step, gamma=lr_gamma)
    #gradient clipping, grad check
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)

    if args.evaluate:
        top1, top5, val_loss = eval(model, dev_loader, encoder, args.gpuid, write_to_file = True)

        top1_avg = top1.get_average_results()
        top5_avg = top5.get_average_results()

        avg_score = top1_avg["verb"] + top1_avg["value"] + top1_avg["value-all"] + top5_avg["verb"] + \
                    top5_avg["value"] + top5_avg["value-all"]
        avg_score /= 8

        print ('Dev average :{:.2f} {} {}'.format( avg_score*100,
                                                   utils.format_dict(top1_avg,'{:.2f}', '1-'),
                                                   utils.format_dict(top5_avg, '{:.2f}', '5-')))

        #write results to csv file
        role_dict = top1.role_dict
        fail_val_all = top1.value_all_dict

        with open('role_pred_data.json', 'w') as fp:
            json.dump(role_dict, fp, indent=4)

        with open('fail_val_all.json', 'w') as fp:
            json.dump(fail_val_all, fp, indent=4)

        print('Writing predictions to file completed !')

    elif args.test:
        top1, top5, val_loss = eval(model, test_loader, encoder, args.gpuid, write_to_file = True)

        top1_avg = top1.get_average_results()
        top5_avg = top5.get_average_results()

        avg_score = top1_avg["verb"] + top1_avg["value"] + top1_avg["value-all"] + top5_avg["verb"] + \
                    top5_avg["value"] + top5_avg["value-all"]
        avg_score /= 8

        print ('Test average :{:.2f} {} {}'.format( avg_score*100,
                                                    utils.format_dict(top1_avg,'{:.2f}', '1-'),
                                                    utils.format_dict(top5_avg, '{:.2f}', '5-')))


    else:

        print('Model training started!')
        train(model, train_loader, dev_loader, traindev_loader, optimizer, scheduler, n_epoch, args.output_dir, encoder, args.gpuid, clip_norm, lr_max, model_name, args)