def test_simple_zca(self): plt.style.use('ggplot') original_image_name = format_image_name("simple_zca.png") original_image = os.path.join(PLOTS_DIR, original_image_name) image = os.path.join(IMGDIR, "cifar10.png") data = imread(image) data = data[:, :, 0] comparison_kwargs = dict(figsize=(10, 6), tol=0.05) with image_comparison(original_image, **comparison_kwargs) as fig: ax = fig.add_subplot(1, 1, 1) zca = preprocessing.ZCA(0.001) zca.train(data) data_transformed = zca.transform(data) ax.imshow(data_transformed, cmap=plt.cm.binary) with image_comparison(original_image, **comparison_kwargs) as fig: ax = fig.add_subplot(1, 1, 1) zca = preprocessing.ZCA(0.001) data_transformed = zca.fit(data).transform(data) ax.imshow(data_transformed, cmap=plt.cm.binary)
def test_max_weight(self): original_image_name = format_image_name("max_weight_hinton.png") original_image = os.path.join(IMGDIR, original_image_name) with image_comparison(original_image, figsize=(10, 6)) as fig: weight = 100 * np.random.randn(20, 20) ax = fig.add_subplot(1, 1, 1) plots.hinton(weight, ax=ax, max_weight=10, add_legend=True)
def test_log_scale(self): original_image_name = format_image_name("log_scale.png") original_image = os.path.join(IMGDIR, original_image_name) with image_comparison(original_image) as fig: ax = fig.add_subplot(1, 1, 1) network = reproducible_network_train(step=0.3) network.plot_errors(logx=True, ax=ax, show=False)
def test_hinton_only_negative(self): original_image_name = format_image_name("hinton_only_negative.png") original_image = os.path.join(IMGDIR, original_image_name) with image_comparison(original_image, figsize=(10, 6)) as fig: weight = -np.random.random((20, 20)) ax = fig.add_subplot(1, 1, 1) plots.hinton(weight, ax=ax)
def test_log_scale(self): original_image_name = format_image_name("log_scale.png") original_image = os.path.join(IMGDIR, original_image_name) with image_comparison(original_image) as fig: ax = fig.add_subplot(1, 1, 1) network = reproducible_network_train(step=0.3) plots.error_plot(network, logx=True, ax=ax, show=False)
def test_simple_plot(self): original_image_name = format_image_name("simple_plot.png") original_image = os.path.join(IMGDIR, original_image_name) with image_comparison(original_image) as fig: ax = fig.add_subplot(1, 1, 1) network = reproducible_network_train(step=0.3) network.plot_errors(ax=ax, show=False)
def test_simple_plot(self): original_image_name = format_image_name("simple_plot.png") original_image = os.path.join(IMGDIR, original_image_name) with image_comparison(original_image) as fig: ax = fig.add_subplot(1, 1, 1) network = reproducible_network_train(step=0.3) plots.error_plot(network, ax=ax, show=False)
def test_hinton_1darray(self): original_image_name = format_image_name("hinton_1darray.png") original_image = os.path.join(IMGDIR, original_image_name) with image_comparison(original_image, figsize=(10, 4)) as fig: weight = -np.random.randn(20) ax = fig.add_subplot(1, 1, 1) plots.hinton(weight, ax=ax)
def test_hinton_without_legend(self): original_image_name = format_image_name("hinton_without_legend.png") original_image = os.path.join(IMGDIR, original_image_name) with image_comparison(original_image, figsize=(10, 6)) as fig: weight = np.random.randn(20, 20) ax = fig.add_subplot(1, 1, 1) plots.hinton(weight, ax=ax, add_legend=False)
def test_simple_hinton(self): original_image_name = format_image_name("simple_hinton.png") original_image = os.path.join(IMGDIR, original_image_name) with image_comparison(original_image, figsize=(10, 6)) as fig: weight = np.random.randn(20, 20) ax = fig.add_subplot(1, 1, 1) plt.sca(ax) # To test the case when ax=None plots.hinton(weight, add_legend=True)
def test_plot_with_validation_dataset(self): original_image_name = format_image_name("with_validation.png") original_image = os.path.join(IMGDIR, original_image_name) with image_comparison(original_image) as fig: ax = fig.add_subplot(1, 1, 1) x_train, x_test, y_train, y_test = simple_classification() gdnet = algorithms.GradientDescent((10, 12, 1), step=0.25) gdnet.train(x_train, y_train, x_test, y_test, epochs=100) plots.error_plot(gdnet, ax=ax, show=False)
def test_plot_with_validation_dataset(self): original_image_name = format_image_name("with_validation.png") original_image = os.path.join(IMGDIR, original_image_name) with image_comparison(original_image) as fig: ax = fig.add_subplot(1, 1, 1) x_train, x_test, y_train, y_test = simple_classification() gdnet = algorithms.GradientDescent((10, 12, 1), step=0.25) gdnet.train(x_train, y_train, x_test, y_test, epochs=100) gdnet.plot_errors(ax=ax, show=False)