Esempio n. 1
0
    def discrim_l2(self, y, y_, step):
        """
        facial semantic feature loss
        evaluate loss use l1 at pixel space
        :param y: input photo, numpy array  [H, W, C]
        :param y_: generated image, tensor  [B, C, W, H]
        :param step: train step
        :return: l1 loss in pixel space
        """
        img1 = parse_evaluate(y.astype(np.uint8),
                              cp=self.parsing,
                              cuda=self.cuda)
        y_ = y_.cpu().detach().numpy()
        y_ = np.squeeze(y_, axis=0)
        y_ = np.swapaxes(y_, 0, 2) * 255
        img2 = parse_evaluate(y_.astype(np.uint8),
                              cp=self.parsing,
                              cuda=self.cuda)
        edge_img1 = utils.img_edge(img1).astype(np.float32)
        edge_img2 = utils.img_edge(img2).astype(np.float32)
        w_g = 1.0
        w_r = 1.0

        if step % self.args.eval_prev_freq == 0:
            path = os.path.join(self.prev_path, "l2_{0}.jpg".format(step))
            edge1_v3 = 255. - ops.fill_grey(edge_img1)
            edge2_v3 = 255. - ops.fill_grey(edge_img2)
            merge = ops.merge_4image(y,
                                     y_,
                                     edge1_v3,
                                     edge2_v3,
                                     transpose=False)
            cv2.imwrite(path, merge)
        return np.mean(np.abs(w_r * edge_img1 - w_g * edge_img2))
Esempio n. 2
0
 def process_item(self, path, save, cuda):
     """
     预处理 change database to 64x64 edge pictures
     :param path: 图片路径 512x512
     :param save: 是否将处理好的图片保存本地
     :param cuda: gpu speedup
     """
     # log.info(path)
     img = utils.evalute_face(path, self.args.parsing_checkpoint, cuda)
     img = utils.img_edge(img)
     if img.shape[0] != 64:
         img = cv2.resize(img, (64, 64), interpolation=cv2.INTER_AREA)
     if save:
         cv2.imwrite(path, img)
     return img
Esempio n. 3
0
 def capture(path, tensor1, tensor2, parse, cuda):
     """
     imitator 快照
     :param cuda: use gpu
     :param path: save path
     :param tensor1: input photo
     :param tensor2: generated image
     :param parse: parse checkpoint's path
     """
     img1 = ops.tensor_2_image(tensor1)[0].swapaxes(0, 1).astype(np.uint8)
     img2 = ops.tensor_2_image(tensor2)[0].swapaxes(0, 1).astype(np.uint8)
     img1 = cv2.resize(img1, (512, 512), interpolation=cv2.INTER_LINEAR)
     img3 = utils.faceparsing_ndarray(img1, parse, cuda)
     img4 = utils.img_edge(img3)
     img4 = 255 - ops.fill_gray(img4)
     image = ops.merge_4image(img1, img2, img3, img4, transpose=False)
     cv2.imwrite(path, image)
Esempio n. 4
0
 def inference(self, cp_name, photo_path, cuda):
     """
     feature extractor: 由图片生成捏脸参数
     :param cuda: gpu speed up
     :param cp_name: checkpoint's path
     :param photo_path: input photo's path
     :return: params [1, params_cnt]
     """
     img = cv2.imread(photo_path)
     scaled = align.align_face(img, size=(64, 64))
     self.load_checkpoint(cp_name, training=False, cuda=cuda)
     img = utils.faceparsing_ndarray(scaled, self.args.parsing_checkpoint, cuda)
     img = utils.img_edge(img)
     with torch.no_grad:
         input = torch.from_numpy(img)
         input = input.view([1, 1, 64, 64])
         params_ = self(input)
         log.info(params_)
         return params_
Esempio n. 5
0
 elif args.phase == "faceparsing":
     log.info("faceparsing")
     im = utils.evalute_face("./output/face/db_0000_3.jpg",
                             args.parsing_checkpoint, cuda)
     cv2.imwrite("./output/eval.jpg", im)
 elif args.phase == "align":
     path = '../export/star'
     for file in os.listdir(path):
         p = os.path.join(path, file)
         log.info(p)
         p2 = os.path.join(path, "a-" + file)
         al = align.face_features(p, p2)
         ev = utils.parse_evaluate(al, args.parsing_checkpoint, cuda=cuda)
         p = os.path.join(path, "b-" + file)
         cv2.imwrite(p, ev)
         ev = 255 - utils.img_edge(ev)
         p = os.path.join(path, "c-" + file)
         cv2.imwrite(p, ev)
 elif args.phase == "dataset":
     dataset = FaceDataset(args, "test")
     dataset.pre_process(cuda)
 elif args.phase == "preview":
     log.info("preview picture")
     path = "../export/regular/model.jpg"
     img = cv2.imread(path)
     img2 = utils.parse_evaluate(img, args.parsing_checkpoint, cuda)
     img3 = utils.img_edge(img2)
     img3_ = ops.fill_grey(img3)
     img4 = align.face_features(path)
     log.info("{0} {1} {2} {3}".format(img.shape, img2.shape, img3_.shape,
                                       img4.shape))
Esempio n. 6
0
 def image_transfer(self, im_path):
     if im_path.find('.jpg') >= 0:
         img = utils.evalute_face(im_path, self.cp, False)
         img = utils.img_edge(img)
         img = cv2.resize(img, (64, 64), interpolation=cv2.INTER_AREA)
         cv2.imwrite(im_path, img)
Esempio n. 7
0
        for file in os.listdir(path):
            p = os.path.join(path, file)
            log.info(p)
            p2 = os.path.join(path, "a_" + file)
            al = align.face_features(p, p2)
            ev = utils.faceparsing_ndarray(al,
                                           args.parsing_checkpoint,
                                           cuda=cuda)
    elif args.phase == "dataset":
        dataset = FaceDataset(args, "test")
        dataset.pre_process(cuda)
    elif args.phase == "preview":
        log.info("preview picture")
        path = "../export/regular/model.jpg"
        img = cv2.imread(path)
        img2 = utils.faceparsing_ndarray(img, args.parsing_checkpoint, cuda)
        img3 = utils.img_edge(img2)
        img3_ = ops.fill_gray(img3)
        img4 = align.face_features(path)
        log.info("{0} {1} {2} {3}".format(img.shape, img2.shape, img3_.shape,
                                          img4.shape))
        ops.merge_4image(img, img2, img3_, img4, show=True)
    elif args.phase == "evaluate":
        log.info("evaluation mode start")
        evl = Evaluate(args, cuda=cuda)
        img = cv2.imread(args.eval_image).astype(np.float32)
        x_ = evl.itr_train(img)
        evl.output(x_, img)
    else:
        log.error("not known phase %s", args.phase)