Esempio n. 1
0
    def run(self):
        encoder = utils.init_encoder(self.encoding)
        traces = utils.gen_traces(self)

        def _(loops):
            for _ in range(loops):
                for trace in traces:
                    encoder.put(trace)
                    encoder.encode()

        yield _
Esempio n. 2
0
    model = args.model(src=None, trg=mscoco_dataset, args=args)

if args.mode == "train":
    logger.info(str(model))

if args.load_encoder_from is not None:
    if args.gpu > -1:
        with torch.cuda.device(args.gpu):
            encoder = torch.load(
                str(args.model_path / args.load_encoder_from) + '.pt',
                map_location=lambda storage, loc: storage.cuda())
    else:
        encoder = torch.load(str(args.model_path / args.load_encoder_from) +
                             '.pt',
                             map_location=lambda storage, loc: storage)
    init_encoder(model, encoder)
    logger.info("Pretrained encoder loaded.")

if args.load_from is not None:
    if args.gpu > -1:
        with torch.cuda.device(args.gpu):
            model.load_state_dict(torch.load(
                str(args.model_path / args.load_from) + '.pt',
                map_location=lambda storage, loc: storage.cuda()),
                                  strict=False)  # load the pretrained models.
    else:
        model.load_state_dict(torch.load(
            str(args.model_path / args.load_from) + '.pt',
            map_location=lambda storage, loc: storage),
                              strict=False)  # load the pretrained models.
    logger.info("Pretrained model loaded.")