Esempio n. 1
0
	def __init__(self, D, hidden_layer_sizes, loss_fn='sigmoid_cross_entropy'):
		self.hidden_layer_sizes = hidden_layer_sizes

		# input batch of training data (batch_size x D):
		self.X = tf.placeholder(tf.float32, shape=(None, D))

		# create hidden layers:
		self.hidden_layers = []
		M1 = D

		for i, M2 in enumerate(self.hidden_layer_sizes):
			h = HiddenLayer(M1, M2, i)
			self.hidden_layers.append(h)
			M1 = M2
			
		# hidden --> output layer parameters:
		Wo, bo = init_weights_and_biases(M2, D)
		self.Wo = tf.Variable(Wo, name='Wo') # (M2 x D)
		self.bo = tf.Variable(bo, name='bo') # D

		# collect all network parameters:
		self.params = []
		for h in self.hidden_layers:
			self.params += h.params
		self.params += [self.Wo, self.bo]
		# print('self.params:', self.params)

		# get output - our reconstruction:
		logits = self.forward(self.X)

		if loss_fn == 'sigmoid_cross_entropy':
			# assuming inputs and outputs to be Bernoulli probabilities
			self.output = tf.nn.sigmoid(logits)
			# define the cost function:
			self.cost = tf.reduce_mean(
				tf.nn.sigmoid_cross_entropy_with_logits(
					labels=self.X, 
					logits=logits
				)
			)

		elif loss_fn == 'mse':
			# assuming the difference (error) between inputs and outputs to be Gaussian
			self.output = tf.nn.sigmoid(logits)	# assuming output is in range [0, 1]	
			# self.output = logits
			self.cost = tf.reduce_mean(
				tf.losses.mean_squared_error(
					labels=self.X,
					predictions=self.output
				)
			)

		# define session:		
		self.sess = tf.InteractiveSession()
Esempio n. 2
0
    def __init__(self, D, hidden_layer_sizes, loss_fn='sigmoid_cross-entropy'):
        self.hidden_layer_sizes = hidden_layer_sizes

        # input batch of training data (batch_size x D):
        self.X = T.matrix('X')

        # create hidden layers:
        self.hidden_layers = []
        M1 = D

        for i, M2 in enumerate(self.hidden_layer_sizes):
            h = HiddenLayer(M1, M2, i)
            self.hidden_layers.append(h)
            M1 = M2

        # hidden --> output layer parameters:
        Wo, bo = init_weights_and_biases(M2, D)
        self.Wo = theano.shared(Wo, name='Wo')  # (M2 x D)
        self.bo = theano.shared(bo, name='bo')  # D

        # collect all network parameters:
        self.params = []
        for h in self.hidden_layers:
            self.params += h.params
        self.params += [self.Wo, self.bo]
        # print('self.params:', self.params)

        # get output - our reconstruction:
        self.output = self.forward(self.X)

        if loss_fn == 'sigmoid_cross-entropy':
            # assuming inputs and outputs to be Bernoulli probabilities
            # define the cost function:
            self.output = T.nnet.sigmoid(self.output)
            # self.cost = -T.mean(self.X*T.log(self.output) + (1 - self.X)*T.log(1 - self.output))
            self.cost = T.mean(
                T.nnet.binary_crossentropy(output=self.output, target=self.X))

        elif loss_fn == 'mse':
            # assuming the difference (error) between inputs and outputs to be Gaussian
            self.output = T.nnet.sigmoid(
                self.output)  # assuming output is in range [0, 1]
            self.cost = T.mean((self.X - self.output)**2)

        self.predict = theano.function(inputs=[self.X], outputs=self.output)
Esempio n. 3
0
 def __init__(self, M1, M2, an_id, f=T.nnet.relu):
     W0, b0 = init_weights_and_biases(M1, M2)
     self.W = theano.shared(W0, name='W%s' % an_id)
     self.b = theano.shared(b0, name='b%s' % an_id)
     self.f = f
     self.params = [self.W, self.b]
Esempio n. 4
0
	def __init__(self, M1, M2, an_id):
		W0, b0 = init_weights_and_biases(M1, M2)
		self.W = tf.Variable(W0, name='W%s'%an_id)
		self.b = tf.Variable(b0, name='b%s'%an_id)
		self.params = [self.W, self.b]
 def __init__(self, M1, M2, an_id, f=tf.nn.relu):
     W0, b0 = init_weights_and_biases(M1, M2)
     self.W = tf.Variable(W0, name="W%s" % an_id)
     self.b = tf.Variable(b0, name="b%s" % an_id)
     self.f = f
     self.params = [self.W, self.b]
 def __init__(self, M1, M2, an_id, f=tf.nn.relu):
     W0, b0 = init_weights_and_biases(M1, M2)
     self.W = tf.Variable(W0, name='W%s' % an_id)
     self.b = tf.Variable(b0, name='b%s' % an_id)
     self.f = f