Esempio n. 1
0
def handle_data2():
    import time
    import re
    from utils import smooth, interpl, chunk_decode
    len_e = 3000
    register = 0x0B
    last_ts = None
    plt.ion()
    ax = plt.gca()
    result_ts = time.time()
    while True:
        response, timestamp = q2.get()
        if not response:
            return

        # Fix raw value
        val = int.from_bytes(response, 'big')
        val_fixed = val

        raw_frames_m.push(np.array([
            [timestamp, val_fixed],
        ]))

        if last_ts is None:
            last_ts = raw_frames_m.window[0][0]

        if raw_frames_m.window[-1][0] - last_ts < 0.6:
            continue

        M = raw_frames_m.window
        M = M[np.logical_and(M[:, 0] > last_ts - 0.5, M[:, 0] < last_ts + 0.5)]
        Mtime = M[:, 0]
        value = M[:, 1]
        last_ts = Mtime[-1]
        sample_time = np.arange(Mtime[0], Mtime[-1], 1 / 2400)
        sample_time = sample_time[sample_time < Mtime[-1]]
        sample_value = interpl(Mtime, value, sample_time, 'nearest')
        sample_value_smooth = smooth(sample_value, 41)
        sample_value_DCremove = smooth(sample_value - sample_value_smooth, 5)

        value = np.zeros((10, 1))
        for i in range(10):
            temp_sample = sample_value_DCremove[i:len_e:10]
            value[i] = max(temp_sample) + min(temp_sample)
        std_min = max(value)
        shift_index = np.where(value == std_min)[0][0]
        sample_wave = sample_value_DCremove[shift_index:len_e:10]
        temp_sample = sample_value_DCremove[shift_index:len_e:10]

        # bit_stream = sample_wave <= (max(temp_sample) + min(temp_sample)) / 2
        bit_stream = sample_wave <= np.mean(temp_sample)
        bit_stream = bit_stream.astype(int)
        result = chunk_decode(bit_stream)
        if result is None:
            result = chunk_decode(bit_stream, flip=True)

        if result is not None:
            result_ts = time.time()
            for i in result:
                print(i)
Esempio n. 2
0
def handle_data(pos_data):
    from utils import smooth, interpl, chunk_decode
    from numpy import genfromtxt
    correct_pck_num = 0
    diff_num = []
    first_detected = False
    # plt.ion()
    # f = plt.figure()
    # ax = f.add_subplot(311)
    # ax2 = f.add_subplot(312)
    # ax3 = f.add_subplot(313)
    # pos_data = genfromtxt(FILE_NAME, delimiter=',')
    real_time = pos_data[:,1]
    real_val = pos_data[:,0]
    even_time = np.arange(real_time[0], real_time[-1], 1/2400)
    even_time = even_time[even_time < real_time[-1]]
    even_val = interpl(real_time, real_val, even_time, 'nearest')
    even_val_smooth = smooth(even_val, 21)
    even_val_DCremove = smooth(even_val - even_val_smooth, 5)
    # np.savetxt('even_val_DCremove.csv', even_val_DCremove, delimiter=',')

    total_points = len(even_time)
    # maintain slide window within 0.3s
    raw_frames_m = deque(maxlen=int(2400*0.3))
    for i in range(total_points):
        val = even_val_DCremove[i]
        ts = even_time[i]
        raw_frames_m.append([ts, val])
        
        if len(raw_frames_m) != raw_frames_m.maxlen:
            continue

        sample_value_DCremove = np.array(raw_frames_m)[:,1]
        value = np.zeros((10, 1))
        for i in range(10):
            temp_sample = sample_value_DCremove[i:raw_frames_m.maxlen:10]
            value[i] = max(temp_sample) - min(temp_sample)
        std_min = max(value)
        shift_index = np.where(value==std_min)[0][0]
        sample_wave = sample_value_DCremove[shift_index:raw_frames_m.maxlen:10]
        temp_sample = sample_value_DCremove[shift_index:raw_frames_m.maxlen:10]
        
        # bit_stream = sample_wave <= (max(temp_sample) + min(temp_sample)) / 2
        bit_stream = sample_wave <= np.mean(temp_sample)
        bit_stream = bit_stream.astype(int)
        result, diff_count = chunk_decode(bit_stream)
        if result is None:
            result, diff_count = chunk_decode(bit_stream, flip=True)
        if result is not None:
            if not first_detected: first_detected = True
            for _ in range(int(raw_frames_m.maxlen/2)):
                raw_frames_m.popleft()
            # print(result)
            start_ts = np.array(raw_frames_m)[0,0]
            end_ts = np.array(raw_frames_m)[-1,0]
            to_plot = pos_data[np.logical_and(pos_data[:,1] > start_ts, pos_data[:,1] < end_ts)][:,0]
            to_plot_FFT = fft(to_plot[:250])
            l = 30
            to_plot_FFT[1+l:to_plot_FFT.size-l] = 0

            # ax.plot(to_plot[:250])
            # ax2.plot(ifft(to_plot_FFT))
            # ax3.plot(to_plot_FFT[1:])
            # plt.pause(10)
            # plt.show()
            correct_pck_num += 1
            diff_num.append(diff_count[0])
        elif first_detected and diff_count != []:
            diff_num.append(diff_count[0])
    print('correct_pck_num:', correct_pck_num)
    # print('diff_num:', diff_num)
    diff_num = sorted(diff_num)
    diff_num = diff_num[:100]
    # print(diff_num)
    total_error_num = sum(diff_num) + (100 - len(diff_num)) * 62
Esempio n. 3
0
    def resolve(self, val_tuple, fix=True):
        timestamp, val = val_tuple
        val_fixed = val
        if fix:
            # print(val_fixed)
            if val_fixed < 128:
                val_fixed += 128
            if val_fixed > 240:
                return
            self.frames.append((timestamp, val_fixed))
            frames = self.frames
            if self.last_ts is None:
                self.last_ts = frames[0][0]
            last_ts = self.last_ts
            # print(timestamp, val_fixed)
        else:
            self.frames_accum.append((timestamp, val_fixed))
            frames = self.frames_accum
            if self.last_ts_accum is None:
                self.last_ts_accum = frames[0][0]
            last_ts = self.last_ts_accum
        
        if frames[-1][0] - last_ts < 0.6:
            return

        M = np.array(frames)
        M = M[np.logical_and(M[:,0] > last_ts - 0.5, M[:,0] < last_ts + 0.5)]
        if M.size == 0:
            M = np.array(frames)
            M = M[M[:,0] > last_ts - 0.5]
        Mtime = M[:,0]
        value = M[:,1]
        if fix:
            self.last_ts = Mtime[-1]
        else:
            self.last_ts_accum = Mtime[-1]
        if Mtime[-1] - Mtime[0] < 0.3:
            return
        sample_time = np.arange(Mtime[0], Mtime[-1], 1 / 2400)
        sample_value = interpl(Mtime, value, sample_time[:-1], 'nearest')
        sample_time = sample_time[:-1]
        sample_value_smooth = smooth(sample_value, 41)
        sample_value_DCremove = smooth(sample_value - sample_value_smooth, 5)

        value = np.zeros((10, 1))
        for i in range(10):
            temp_sample = sample_value_DCremove[i:self.len_e:10]
            value[i] = max(temp_sample) - min(temp_sample)
        std_min = max(value)
        shift_index = np.where(value==std_min)[0][0]
        sample_wave = sample_value_DCremove[shift_index:self.len_e:10]
        temp_sample = sample_value_DCremove[shift_index:self.len_e:10]

        bit_stream = sample_wave <= np.mean(temp_sample)
        bit_stream = bit_stream.astype(int)
        result = chunk_decode(bit_stream)
        if result is None:
            result = chunk_decode(bit_stream, flip=True)

        if result is not None:
            # print(result)
            self.reset()
            return result
Esempio n. 4
0
def handle_data():
    global succ_count, crc_count
    import time
    import re
    from utils import smooth, interpl, chunk_decode
    len_e = 3000
    register = 0x0B
    last_ts = None
    plt.ion()
    ax = plt.gca()
    result_ts = time.time()
    while True:
        response, timestamp = q.get()
        if not response:
            return

        # Fix raw value
        val = int.from_bytes(response, 'big')
        val_fixed = val
        if register == 0x0D:
            if val_fixed < 128:
                val_fixed += 128
            if val_fixed > 240:
                continue

        raw_frames_m.push(np.array([
            [timestamp, val_fixed],
        ]))

        # raw_frames_m.update_line_data()
        # ax.relim() # renew the data limits
        # ax.autoscale_view(True, True, True) # rescale plot view
        # plt.draw() # plot new figure
        # plt.pause(1e-17)

        # continue

        if last_ts is None:
            last_ts = raw_frames_m.window[0][0]

        if raw_frames_m.window[-1][0] - last_ts < 0.6:
            continue

        M = raw_frames_m.window
        M = M[np.logical_and(M[:, 0] > last_ts - 0.5, M[:, 0] < last_ts + 0.5)]
        Mtime = M[:, 0]
        value = M[:, 1]
        last_ts = Mtime[-1]
        sample_time = np.arange(Mtime[0], Mtime[-1], 1 / 2400)
        sample_time = sample_time[sample_time < Mtime[-1]]
        sample_value = interpl(Mtime, value, sample_time, 'nearest')
        sample_value_smooth = smooth(sample_value, 41)
        sample_value_DCremove = smooth(sample_value - sample_value_smooth, 5)

        value = np.zeros((10, 1))
        for i in range(10):
            # temp_sample = sample_value_DCremove[i:len_e:5]
            temp_sample = sample_value_DCremove[i:len_e:10]
            # temp_sample2 = sample_value_DCremove[i+5:len_e:10*4]
            # temp_sample3 = sample_value_DCremove[i+10:len_e:10*4]
            # temp_sample4 = sample_value_DCremove[i+15:len_e:10*4]
            # print(temp_sample)
            # ts1 = np.hstack((temp_sample, temp_sample3))
            # print(ts1)
            # ts2 = np.hstack((temp_sample2, temp_sample4))
            value[i] = max(temp_sample) + min(temp_sample)
            # value[i] += np.std(ts2[ts2 > (max(ts2) + min(ts2)) / 2])
            # value[i]
        std_min = max(value)
        shift_index = np.where(value == std_min)[0][0]
        sample_wave = sample_value_DCremove[shift_index:len_e:10]
        temp_sample = sample_value_DCremove[shift_index:len_e:10]
        ###################### draw ########################

        # plt.cla()

        # plt.subplot(2, 1, 1)
        # plt.cla()
        # plt.plot(np.arange(len(sample_value_DCremove[shift_index:len_e])), sample_value_DCremove[shift_index:len_e])

        # plt.subplot(2, 1, 2)
        # plt.plot(np.arange(sample_wave.size), sample_value_DCremove[shift_index:len_e:5], marker='x')
        # # plt.scatter(np.arange(sample_wave.size), sample_value_DCremove[shift_index:len_e:5])
        # threshold = np.array([(max(temp_sample) + min(temp_sample)) / 2] * sample_wave.size)
        # # threshold = np.array([(max(sample_value_DCremove) + min(sample_value_DCremove)) / 2] * sample_wave.size)
        # plt.plot(np.arange(sample_wave.size), threshold)
        # # plt.scatter(sample_wave)

        # # for i in range(2, len_e, 10):
        # #     plt.plot(sample_value_DCremove[i:i + 10], '.-')

        # raw_frames_m.update_line_data()
        # ax.relim() # renew the data limits
        # ax.autoscale_view(True, True, True) # rescale plot view
        # plt.draw() # plot new figure
        # plt.pause(1)

        ###################### draw ########################

        # thresholding

        # bit_stream = sample_wave <= (max(temp_sample) + min(temp_sample)) / 2
        bit_stream = sample_wave <= np.mean(temp_sample)
        bit_stream = bit_stream.astype(int)
        result, crc_fail = chunk_decode(bit_stream)
        if result is None:
            result, crc_fail = chunk_decode(bit_stream, flip=True)
            if crc_fail != []:
                crc_count.append(np.mean(crc_fail))
        else:
            if crc_fail != []:
                crc_count.append(np.mean(crc_fail))

        if result is not None:
            result_ts = time.time()
            succ_count += len(result)
            print('succ_count', succ_count)
            print('crc_fail', np.mean(crc_count))
            crc_fail_count = len(crc_count)
            miss_count = 100 + 48.65 - succ_count - crc_fail_count
            # bit_error_rate = (succ_count * 14 * 4 + (100 + 48.65 - succ_count) * (14*4 - np.mean(crc_count))) / ((100 + 48.65) * 14*4)
            bit_error_rate = (succ_count * 14 * 4 + crc_fail_count *
                              (14 * 4 - np.mean(crc_count))) / (
                                  (100 + 48.65) * 14 * 4)
            print('bit_error_rate', 1 - bit_error_rate)
            for i in result:
                print(i)