plt.title(f"Box for class {class_}")
                plt.show()

    classes = np.array(classes)

    return boxes, classes


if __name__ == "__main__":

    DEBUG = False
    NPZ_INDEX = 0
    DATA_TO_COLLECT = 1000  # we want to get 1000 data points

    seed(123)
    environment = launch_env()

    policy = PurePursuitPolicy(environment)

    MAX_STEPS = 500

    SAMPLE_FREQ = 10

    while NPZ_INDEX < DATA_TO_COLLECT:
        obs = environment.reset()
        environment.render(segment=True)
        rewards = []

        nb_of_steps = 0

        while NPZ_INDEX < DATA_TO_COLLECT:
Esempio n. 2
0
nb_of_steps = 0

# we interate over several maps to get more diverse data
possible_maps = [
    "loop_pedestrians", "udem1", "loop_dyn_duckiebots", "zigzag_dists"
]
env_id = 0
env = None
while True:
    if env is not None:
        env.window.close()
        env.close()

    if env_id >= len(possible_maps):
        env_id = env_id % len(possible_maps)
    env = launch_env(possible_maps[env_id])
    policy = PurePursuitPolicy(env)
    obs = env.reset()

    inner_steps = 0
    if nb_of_steps >= MAX_STEPS:
        break

    while True:
        if nb_of_steps >= MAX_STEPS or inner_steps > 100:
            break

        action = policy.predict(np.array(obs))

        obs, rew, done, misc = env.step(action)
        seg = env.render_obs(True)