Esempio n. 1
0
    def make_domain_match_dict(self):
        d = dict()
        for name, cfg in self.cfgs.items():
            ns = name.split('.')
            utils.list_to_dict(ns, d, cfg)

        return d
Esempio n. 2
0
def get_connections(request):
    response = {"status": 0, "errors": None, "connections": []}
    try:
        c = client.SqoopClient(conf.SERVER_URL.get(), request.user.username, request.LANGUAGE_CODE)
        response["connections"] = list_to_dict(c.get_connections())
    except RestException, e:
        response.update(handle_rest_exception(e, _("Could not get connections.")))
Esempio n. 3
0
    def product_menu(self, category_value):
        """This method displays the product menu and wait the input
        from user to continue.
        """
        products = \
            self.product_manager.get_product_list_by_category_db(
                self.db_manager, 10, category_value)

        products = utils.list_to_dict(products)
        view = ViewProduct(products)

        value = ""
        expression = [str(x) for x in range(1, len(products) + 1)]

        ViewProduct.print_select()

        while value not in expression:
            view.print_menu()
            value = input()

        product = Product(**products[int(value)])
        product_barcode = product.barcode

        if product.nutriscore_grade == 'a':
            ViewProduct.print_nutriscore_a()
            self.category_menu()
        else:
            substitute = utils.find_substitute(product_barcode, category_value,
                                               self.db_manager,
                                               self.product_manager)
            self.substitute_menu(substitute, product)
Esempio n. 4
0
def get_links(request):
    response = {'status': 0, 'errors': None, 'links': []}
    try:
        c = client.SqoopClient(conf.SERVER_URL.get(), request.user.username,
                               request.LANGUAGE_CODE)
        response['links'] = list_to_dict(c.get_links())
    except RestException, e:
        response.update(handle_rest_exception(e, _('Could not get links.')))
Esempio n. 5
0
def get_connectors(request):
  response = {
    'status': 0,
    'errors': None,
    'connectors': []
  }
  try:
    c = client.SqoopClient(conf.SERVER_URL.get(), request.user.username, request.LANGUAGE_CODE, ssl_cert_ca_verify=conf.SSL_CERT_CA_VERIFY.get())
    response['connectors'] = list_to_dict(c.get_connectors())
  except RestException, e:
    response.update(handle_rest_exception(e, _('Could not get connectors.')))
Esempio n. 6
0
File: link.py Progetto: 10sr/hue
def get_links(request):
  response = {
    'status': 0,
    'errors': None,
    'links': []
  }
  try:
    c = client.SqoopClient(conf.SERVER_URL.get(), request.user.username, request.LANGUAGE_CODE)
    response['links'] = list_to_dict(c.get_links())
  except RestException, e:
    response.update(handle_rest_exception(e, _('Could not get links.')))
Esempio n. 7
0
def get_submissions(request):
    response = {'status': 0, 'errors': None, 'submissions': []}
    status = request.GET.get('status', 'submissions').split(',')
    try:
        c = client.SqoopClient(conf.SERVER_URL.get(), request.user.username,
                               request.LANGUAGE_CODE)
        submissions = c.get_submissions()
        response['submissions'] = list_to_dict(submissions)
    except RestException, e:
        response.update(
            handle_rest_exception(e, _('Could not get submissions.')))
Esempio n. 8
0
def get_jobs(request):
    response = {'status': 0, 'errors': None, 'jobs': []}
    try:
        c = client.SqoopClient(
            conf.SERVER_URL.get(),
            request.user.username,
            request.LANGUAGE_CODE,
            ssl_cert_ca_verify=conf.SSL_CERT_CA_VERIFY.get())
        jobs = c.get_jobs()
        response['jobs'] = list_to_dict(jobs)
    except RestException, e:
        response.update(handle_rest_exception(e, _('Could not get jobs.')))
Esempio n. 9
0
 def test_inorder_traversal(self):
     """ Test the inorder traversal print"""
     size = 20
     seq = utils.random_seq(size)
     utils.list_to_bst(seq, self.bst)
     seq_dict = utils.list_to_dict(seq)
     sorted_keys = sorted(seq_dict.keys())
     res = [str(seq_dict[i]) for i in sorted_keys]
     with patch('sys.stdout', new=StringIO()) as fake_out:
         self.bst.inorder_traversal_print()
         printed_values = fake_out.getvalue().strip("\n")
         list_data = printed_values.split("\n")
         self.assertEqual(list_data, res)
Esempio n. 10
0
def get_submissions(request):
  response = {
    'status': 0,
    'errors': None,
    'submissions': []
  }
  status = request.GET.get('status', 'all').split(',')
  try:
    c = client.SqoopClient(conf.SERVER_URL.get(), request.user.username, request.LANGUAGE_CODE)
    submissions = c.get_submissions()
    response['submissions'] = list_to_dict(submissions)
  except RestException, e:
    response.update(handle_rest_exception(e, _('Could not get submissions.')))
Esempio n. 11
0
    def test_inorder_traversal(self):
        """ Test the inorder traversal print"""
        seq = [3, 10, 4, 14, 1, 8, 2, 9, 12, 18, 16, 7, 0, 11, 17, 5, 13, 6, 19, 15]
        utils.list_to_bst(seq, self.bst)

        seq_dict = utils.list_to_dict(seq)# Done to get index for each value.
        sorted_keys = sorted(seq_dict.keys())# Get keys in order, values from seq list
        # use sorted keys to get values for they keys in order
        res = [str(seq_dict[i]) for i in sorted_keys]
        with patch('sys.stdout', new=StringIO()) as fake_out:
            self.bst.inorder_traversal_print()
            printed_values = fake_out.getvalue().strip("\n")
            list_data = printed_values.split("\n")
            self.assertEqual(list_data, res)
Esempio n. 12
0
    def __init__(self, root, transform=None, target_transform=None):
        classes, class_to_idx = self._find_classes(root)
        samples = _make_dataset(root, class_to_idx, IMG_EXTENSIONS)
        cooccuring_tracks_file = os.path.join(root, "cooccurring_tracks.txt")
        with open(cooccuring_tracks_file) as file:
            self.cooccurring_tracks = [[int(n) for n in line.split(',')]
                                       for line in file]
        if len(samples) == 0:
            raise (RuntimeError("Found 0 files in subfolders of: " + root +
                                "\n"
                                "Supported extensions are: " +
                                ",".join(IMG_EXTENSIONS)))

        self.root = root

        self.classes = classes
        self.class_to_idx = class_to_idx
        self.samples = samples
        self.track_targets = [s[1] for s in samples]
        # self.gt_targets = [s[2] for s in samples]

        track_to_gt_list = utils.read_file_to_list(
            os.path.join(root, 'track_gt.txt'))
        track_to_gt_dict = utils.list_to_dict(track_to_gt_list)

        gtclass_to_idx = {}
        gt_idx = 0
        gt_targets = []
        for track_id in self.track_targets:
            if track_to_gt_dict[track_id] not in gtclass_to_idx.keys():
                gtclass_to_idx[track_to_gt_dict[track_id]] = gt_idx
                gt_idx += 1
            label = gtclass_to_idx[track_to_gt_dict[track_id]]
            gt_targets.append(label)

        self.gt_targets = gt_targets

        track_idx_to_sample_idx = {}
        for track_idx in np.unique(self.track_targets):
            track_idx_to_sample_idx[track_idx] = np.where(
                self.track_targets == track_idx)[0]

        self.track_idx_to_sample_idx = track_idx_to_sample_idx

        self.transform = transform
        self.target_transform = target_transform
Esempio n. 13
0
    def category_menu(self):
        """This method displays the category menu and wait the input
        from user to continue.
        """
        categories = config.value['CATEGORIES']
        categories = utils.list_to_dict(categories)

        view = ViewCategory(categories)

        expression = [str(x) for x in range(1, len(categories) + 1)]
        value = ""
        ViewCategory.print_select()

        while value not in expression:
            view.print_menu()
            value = input()

        category = categories[int(value)]

        self.product_menu(category)
Esempio n. 14
0
def extract_metatiles(state_graph_files, unique_metatiles_file, metatile_coords_dict_file):

    all_metatiles = []
    unique_metatiles = []
    metatile_coords_dict = {}

    for state_graph_file in state_graph_files:

        # Load in the state graph
        state_graph = nx.read_gpickle(state_graph_file)

        # Extract game and level from state graph filename
        level_info = parse_state_graph_filename(state_graph_file)
        game, level = level_info['game'], level_info['level']

        # Generate level object from file
        level_obj = Level.generate_level_from_file(game, level)

        # Create dictionaries for level platform coords, bonus coords, and goal coords
        platform_coords_dict = utils.list_to_dict(level_obj.get_platform_coords())
        bonus_coords_dict = utils.list_to_dict(level_obj.get_bonus_coords())
        goal_coords_dict = utils.list_to_dict(level_obj.get_goal_coords())
        one_way_platform_coords_dict = utils.list_to_dict(level_obj.get_one_way_platform_coords())
        hazard_coords_dict = utils.list_to_dict(level_obj.get_hazard_coords())
        wall_coords_dict = utils.list_to_dict(level_obj.get_wall_coords())
        permeable_wall_coords_dict = utils.list_to_dict(level_obj.get_permeable_wall_coords())

        # Extract metatiles from level
        all_possible_coords = level_obj.get_all_possible_coords()
        metatile_coord_states_map = get_metatile_coord_states_map(state_graph, all_possible_coords)

        for metatile_coord in all_possible_coords:

            new_metatile = construct_metatile(metatile_coord,
                                              game=game, level=level,
                                              level_start_coord=level_obj.get_start_coord(),
                                              level_goal_coords_dict=goal_coords_dict,
                                              level_platform_coords_dict=platform_coords_dict,
                                              level_bonus_coords_dict=bonus_coords_dict,
                                              level_one_way_platform_coords_dict=one_way_platform_coords_dict,
                                              level_hazard_coords_dict=hazard_coords_dict,
                                              level_wall_coords_dict=wall_coords_dict,
                                              level_permeable_wall_coords_dict = permeable_wall_coords_dict,
                                              state_graph=state_graph,
                                              metatile_coord_states_map=metatile_coord_states_map)

            # Add new_metatile to list of all_metatiles
            all_metatiles.append(new_metatile)

            # Update unique_metatiles list
            if new_metatile not in unique_metatiles:
                unique_metatiles.append(new_metatile)  # add new metatile
            else:
                metatile_idx = unique_metatiles.index(new_metatile)
                existing_metatile = unique_metatiles.pop(metatile_idx)  # remove old metatile
                new_metatile = existing_metatile.merge_games_and_levels(new_metatile)  # merge metatile games and levels
                unique_metatiles.append(new_metatile)  # add new (merged) metatile

            # Create {metatile: coords} dictionary
            if metatile_coords_dict_file is not None:  # only one state graph file given => only one game per metatile
                new_metatile_str = new_metatile.to_str()
                if metatile_coords_dict.get(new_metatile_str) is None:
                    metatile_coords_dict[new_metatile_str] = [metatile_coord]
                else:
                    metatile_coords_dict[new_metatile_str].append(metatile_coord)

    # Save unique_metatiles to file
    utils.write_pickle(unique_metatiles_file, unique_metatiles)

    # Create {unique_metatile: coords} dictionary
    if metatile_coords_dict_file is not None:
        unique_metatile_coords_dict = {}
        ordered_metatiles = []
        ordered_coords_lists = []

        for metatile_str, coords in metatile_coords_dict.items():
            ordered_metatiles.append(Metatile.from_str(metatile_str))
            ordered_coords_lists.append(coords)
        for unique_metatile in unique_metatiles:
            unique_metatile_str = unique_metatile.to_str()
            unique_metatile_coords_dict[unique_metatile_str] = []
            for idx in utils.get_all_indices(unique_metatile, ordered_metatiles):
                unique_metatile_coords_dict[unique_metatile_str] += ordered_coords_lists[idx]

        utils.write_pickle(metatile_coords_dict_file, unique_metatile_coords_dict)  # save to file

    return all_metatiles, unique_metatiles
Esempio n. 15
0
 def get_id(self):
     album_track_dict = list_to_dict(
         list(filter(None, self.parsed_url.path.rsplit("/"))))
     print(album_track_dict)
     return album_track_dict
Esempio n. 16
0
def annotate_video(movie_file_path: str,
                   dataset_path: str,
                   output_path: str,
                   model: nn.Module,
                   device,
                   max_frame: int = 100000,
                   tracker_max_age: int = 10,
                   plotter: utils.plotter_utils.VisdomPlotter = None,
                   name: str = '',
                   compute_track_mean: bool = False):

    filename = os.path.join(dataset_path, 'bbx.txt')
    print('Getting annotations from {}'.format(filename))
    bbx_list = utils.read_file_to_list(filename)

    if bbx_list:
        bounding_boxes_list = bbx_list
    else:
        bounding_boxes_list = get_bounding_boxes(movie_file_path,
                                                 max_frame=max_frame,
                                                 tracker_max_age=tracker_max_age)

    print('Extracting ROI of the video.')
    cropped_image_list = get_cropped_images(movie_file_path,
                                            bounding_boxes_list,
                                            max_frame=max_frame)

    track_dict = get_track_dict(bounding_boxes_list)
    frame_dict = get_frame_dict(bounding_boxes_list)
    bbx_dict = get_bbx_dict(bounding_boxes_list)

    # Data transform
    data_transform = transforms.Compose([
        transforms.ToTensor()
    ])

    dataset = NumpyDataset(cropped_image_list,
                           transform=data_transform)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             num_workers=2,
                                             batch_size=100)

    print('Extracting features.')
    model = model.to(device)
    features = ml_utils.extract_features(dataloader,
                                         model,
                                         device)
    cluster_techniques_list = ['kmeans', 'spectral', 'hac']

    tsne_features, tsne_chosen_samples = projection_utils.tsne_projection(features)
    pca_features, pca_chosen_samples = projection_utils.pca_projection(features)

    # Frame level clustering
    print('Performing frame level clustering.')
    for cluster_method in cluster_techniques_list:
        cluster_name = '{}_frame_level_{}'.format(name, cluster_method)
        predictions, data_dict = clustering.cluster_techniques(features,
                                                     cluster_method,
                                                     max_clusters=10)

        write_video(movie_file_path,
                    output_path,
                    predictions,
                    frame_dict,
                    name=cluster_name,
                    max_frame=max_frame)

        plotter.scatter_plot(cluster_name + '_tsne',
                             tsne_features,
                             predictions[tsne_chosen_samples])
        plotter.scatter_plot(cluster_name + '_pca',
                             pca_features,
                             predictions[pca_chosen_samples])

    # Add ground truth if it exist
    gt_file_path = os.path.join(dataset_path, 'bbx_gt.txt')
    if os.path.isfile(gt_file_path):
        print('Creating ground truth video and plots.')
        bbx_to_gt_list = utils.read_file_to_list(gt_file_path)
        bbx_to_gt_dict = utils.list_to_dict(bbx_to_gt_list)

        groundtruth = []
        gt_to_idx_dict = {}
        bbx_count = 0
        for bbx in bounding_boxes_list:
            bbx_idx = bbx[2]
            gt = bbx_to_gt_dict[bbx_idx]
            if gt not in gt_to_idx_dict.keys():
                gt_to_idx_dict[gt] = bbx_count
                bbx_count += 1
            label = gt_to_idx_dict[gt]
            groundtruth.append(label)
        groundtruth = np.array(groundtruth)

        gt_name = '{}_gt'.format(name)
        write_video(movie_file_path,
                    output_path,
                    groundtruth,
                    frame_dict,
                    name=gt_name,
                    max_frame=max_frame)

        plotter.scatter_plot(gt_name + '_tsne',
                             tsne_features,
                             groundtruth[tsne_chosen_samples])
        plotter.scatter_plot(gt_name + '_pca',
                             pca_features,
                             groundtruth[pca_chosen_samples])

    # Track level clustering
    if compute_track_mean:
        print('Performing track level clustering.')

        mean_features = []
        track_to_idx_dict = {}
        for idx, track_idx in enumerate(track_dict.keys()):
            feature_track = features[track_dict[track_idx]]
            mean_features.append(np.mean(feature_track, axis=0))
            track_to_idx_dict[track_idx] = idx
        mean_features = np.asarray(mean_features)

        for cluster_method in cluster_techniques_list:
            cluster_name = '{}_track_level_{}'.format(name, cluster_method)
            mean_predictions, data_dict = clustering.cluster_techniques(mean_features,
                                                                        cluster_method,
                                                                        max_clusters=10)
            predictions = []
            for bbx_idx in bbx_dict.keys():
                track_idx = track_to_idx_dict[bbx_dict[bbx_idx][0]]
                predictions.append(mean_predictions[track_idx])
            predictions = np.array(predictions)

            write_video(movie_file_path,
                        output_path,
                        predictions,
                        frame_dict,
                        name=cluster_name,
                        max_frame=max_frame)

            plotter.scatter_plot(cluster_name + '_tsne',
                                 tsne_features,
                                 predictions[tsne_chosen_samples])
            plotter.scatter_plot(cluster_name + '_pca',
                                 pca_features,
                                 predictions[pca_chosen_samples])
Esempio n. 17
0
#!/usr/bin/python
#coding: utf8
#Author: chenyunyun<*****@*****.**>

from utils import dict_merge, list_to_dict

RESPONSE_CALLBACK = dict_merge(
    list_to_dict(
        'set',
        lambda r: bool(int(r[0]))
    ),
    list_to_dict(
        'get',
        lambda r: r[0]
    ),
)
class Response(object):
    def __init__(self, command_name, code, body=None):
        self.command_name = command_name
        self.code = code
        self.body = body

    @property
    def ok(self):
        return self.code == 'code'

    @property
    def not_found(self):
        return self.code == 'not_found'

    @property