help='Number of clusters.') parser.add_argument('--dropout', type=float, default=0., help='Dropout rate (1 - keep probability).') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() np.random.seed(args.seed) torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) adj, features = load_gene_data(use_features=True, _adj='homology', _feat='ontology') # create graph from adjacency matrix G = nx.from_numpy_matrix(adj.toarray()) # print(adj.shape) # # print(G.number_of_edges()) # print(G.number_of_nodes()) adj_label = adj adj_label = torch.FloatTensor(adj_label.toarray()) adj_train = preprocess_graph(adj)
default=0., help='Dropout rate (1 - keep probability).') parser.add_argument('--saved-model', type=str, default='models/gae', help='Saved model') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() np.random.seed(args.seed) torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) adj, features = load_gene_data() G = nx.from_numpy_matrix(adj.toarray()) adj_train = preprocess_graph(adj) model = GCNModelAE(nfeat=features.shape[1], nhid=args.hidden, nclass=args.ndim, dropout=args.dropout) model.load_state_dict(torch.load(args.saved_model)) model.eval() model(features, adj_train) output = model.mu.data # Normalize the output data data = output