def run(filename_in, filename_out):
    # parameters of CNN-VLM model
    model_name = 'vggnet'
    layer_names = [
        'data',
        'conv1_2',
        'conv2_2',
        'conv3_4',
        'conv4_4',
        'conv5_4',
    ]
    directory = './theanomodel'
    filename = (
        '%s/%s_vlm_%s.pkl' %
        (directory, model_name, '_'.join(layer_names))
    )

    # parameters of saliency map
    layer_target = 'conv5_4'
    pool_size = 2**4
    pow_ = 0.5
    sigma = 0.03

    # load model
    model = pickle.load(open(filename))
    func = theano.function(
        [model['data']],
        model['loss_lm_%s_map' % layer_target]
    )
    img_mean = utils.load_mean_image()

    # load image
    img1 = utils.load_image(filename_in, img_mean)

    # compute unnaturalness map
    img2 = func(img1[None, :, :, :]).squeeze()

    # pow
    img2 = img2 ** pow_

    # resize to original size
    img2 = rescale_image(img2, pool_size)
    img2 = pad_image(img2, img1.shape[1:])

    # blur
    img2 = scipy.ndimage.filters.gaussian_filter(
        img2,
        (sigma*img2.shape[0], sigma*img2.shape[1]),
    )

    # normalize
    img2 = (img2 - img2.min()) / (img2.max() - img2.min())
    img2 = (img2 * 255).astype(np.uint8)

    # save
    scipy.misc.imsave(filename_out, img2)
Esempio n. 2
0
def run(
    model_name='alexnet',
    layer_names=[
        'data',
        'conv1',
        'conv2',
        'conv3',
        'conv4',
        'conv5',
        'fc6', 'fc7', 'fc8'
    ],
    image_size=(227, 227),
):
    directory = './theanomodel'
    filename_save = '%s/%s_mean_std_%s.pkl'
    filename_train = './image/valid/*.JPEG'
    filename_model = '%s/%s.model' % (directory, model_name)

    # load model
    img_mean = utils.load_mean_image()
    model = pickle.load(open(filename_model))

    # get filename
    filename_train = glob.glob(filename_train)

    # get function to compute mean and mean**2
    func = get_function_mean_var(model, layer_names)

    # for all images
    means = {layer_name: [] for layer_name in layer_names}
    vars_ = {layer_name: [] for layer_name in layer_names}
    for i, fn in enumerate(filename_train):
        print 'computing mean: %d / %d' % (i, len(filename_train))
        img = utils.load_image(fn, img_mean)
        img = utils.clip_image(img, image_size)
        mvs = func(img[None, :, :, :])
        for j, layer_name in enumerate(layer_names):
            means[layer_name].append(mvs[j*2])
            vars_[layer_name].append(mvs[j*2+1])

    # save
    for layer_name in layer_names:
        mean = np.vstack(means[layer_name]).mean(0)
        std = (np.vstack(vars_[layer_name]).mean(0) - mean**2)**0.5
        data = {
            'mean': mean,
            'std': std,
        }
        filename = filename_save % (directory, model_name, layer_name)
        pickle.dump(
            data, 
            open(filename, 'wb'),                  
            protocol=pickle.HIGHEST_PROTOCOL,
        )
Esempio n. 3
0
def run(filename_in, filename_out):
    # parameters of CNN-VLM model
    model_name = 'vggnet'
    layer_names = [
        'data',
        'conv1_2',
        'conv2_2',
        'conv3_4',
        'conv4_4',
        'conv5_4',
    ]
    directory = './theanomodel'
    filename = ('%s/%s_vlm_%s.pkl' %
                (directory, model_name, '_'.join(layer_names)))

    # parameters of saliency map
    layer_target = 'conv5_4'
    pool_size = 2**4
    pow_ = 0.5
    sigma = 0.03

    # load model
    model = pickle.load(open(filename))
    func = theano.function([model['data']],
                           model['loss_lm_%s_map' % layer_target])
    img_mean = utils.load_mean_image()

    # load image
    img1 = utils.load_image(filename_in, img_mean)

    # compute unnaturalness map
    img2 = func(img1[None, :, :, :]).squeeze()

    # pow
    img2 = img2**pow_

    # resize to original size
    img2 = rescale_image(img2, pool_size)
    img2 = pad_image(img2, img1.shape[1:])

    # blur
    img2 = scipy.ndimage.filters.gaussian_filter(
        img2,
        (sigma * img2.shape[0], sigma * img2.shape[1]),
    )

    # normalize
    img2 = (img2 - img2.min()) / (img2.max() - img2.min())
    img2 = (img2 * 255).astype(np.uint8)

    # save
    scipy.misc.imsave(filename_out, img2)
Esempio n. 4
0
def run(
    model_name='alexnet',
    layer_names=['data', 'conv1', 'conv2', 'conv3', 'conv4', 'conv5'],
    image_size=(227, 227),
    num_samples=100000,
):
    directory = './theanomodel'
    filename_save = '%s/%s_pca_%s.pkl'
    filename_mean_std = '%s/%s_mean_std_%s.pkl'
    filename_train = './image/valid/*.JPEG'
    filename_model = '%s/%s.model' % (directory, model_name)

    # load model
    img_mean = utils.load_mean_image()
    model = pickle.load(open(filename_model))

    # get filename
    filename_train = glob.glob(filename_train)
    num_samples_per_image = num_samples / len(filename_train) + 1

    # get function to sample
    func = get_function_sample(model, layer_names, num_samples_per_image)

    # sample
    samples = {layer_name: [] for layer_name in layer_names}
    for i, filename in enumerate(filename_train):
        print 'training PCA: %d / %d' % (i, len(filename_train))
        img = utils.load_image(filename, img_mean)
        img = utils.clip_image(img, image_size)
        s = func(img[None, :, :, :])
        for j, layer_name in enumerate(layer_names):
            samples[layer_name].append(s[j])

    # PCA
    for layer_name in layer_names:
        filename = filename_mean_std % (directory, model_name, layer_name)
        mean_std = pickle.load(open(filename))
        samples[layer_name] = np.vstack(samples[layer_name])
        samples[layer_name] = (
            (samples[layer_name] - mean_std['mean'][None, :]) /
            mean_std['std'][None, :]
        )
        pca = sklearn.decomposition.PCA(whiten=False)
        pca.fit(samples[layer_name])
        filename = filename_save % (directory, model_name, layer_name)
        pickle.dump(
            pca,
            open(filename, 'wb'),       
            protocol=pickle.HIGHEST_PROTOCOL,
        )
def run(
        model_name='alexnet',
        layer_names=['data', 'conv1', 'conv2', 'conv3', 'conv4', 'conv5'],
        image_size=(227, 227),
        num_samples=100000,
):
    directory = './theanomodel'
    filename_save = '%s/%s_pca_%s.pkl'
    filename_mean_std = '%s/%s_mean_std_%s.pkl'
    filename_train = './image/valid/*.JPEG'
    filename_model = '%s/%s.model' % (directory, model_name)

    # load model
    img_mean = utils.load_mean_image()
    model = pickle.load(open(filename_model))

    # get filename
    filename_train = glob.glob(filename_train)
    num_samples_per_image = num_samples / len(filename_train) + 1

    # get function to sample
    func = get_function_sample(model, layer_names, num_samples_per_image)

    # sample
    samples = {layer_name: [] for layer_name in layer_names}
    for i, filename in enumerate(filename_train):
        print 'training PCA: %d / %d' % (i, len(filename_train))
        img = utils.load_image(filename, img_mean)
        img = utils.clip_image(img, image_size)
        s = func(img[None, :, :, :])
        for j, layer_name in enumerate(layer_names):
            samples[layer_name].append(s[j])

    # PCA
    for layer_name in layer_names:
        filename = filename_mean_std % (directory, model_name, layer_name)
        mean_std = pickle.load(open(filename))
        samples[layer_name] = np.vstack(samples[layer_name])
        samples[layer_name] = (
            (samples[layer_name] - mean_std['mean'][None, :]) /
            mean_std['std'][None, :])
        pca = sklearn.decomposition.PCA(whiten=False)
        pca.fit(samples[layer_name])
        filename = filename_save % (directory, model_name, layer_name)
        pickle.dump(
            pca,
            open(filename, 'wb'),
            protocol=pickle.HIGHEST_PROTOCOL,
        )
def run(
        model_name='alexnet',
        layer_names=['data', 'conv1', 'conv2', 'conv3', 'conv4', 'conv5'],
        layer_sizes=[3, 96, 256, 384, 384, 256],
        batch_size=16,
        lr=1e+1,
        max_iter=20000,
        image_size=(227, 227),
        save_interval=1000,
):
    directory = './theanomodel'
    filename_train = './image/valid/*.JPEG'
    filename_save = '%s/%s_vlm_%s.pkl' % (directory, model_name,
                                          '_'.join(layer_names))
    lr_reduce_factor = 0.1
    lr_reduce_interval = 5000

    # load model
    img_mean = utils.load_mean_image()
    model, tparams = build_model(model_name, layer_names, layer_sizes)

    # build solver
    solver = solvers.SGD(
        model['loss_lm'],
        [model['data']],
        tparams.values(),
        lr=lr,
    )

    # get filename
    filename_train = glob.glob(filename_train)

    # train
    loss = []
    for iter_ in range(max_iter + 1):
        # load images
        imgs = []
        for filename in np.random.choice(filename_train, batch_size):
            img = utils.load_image(filename, img_mean)
            img = utils.clip_image(img, image_size)
            imgs.append(img)
        imgs = np.array(imgs)

        # update
        l = solver.update(imgs)
        loss.append(l)
        print 'training VLM: %d / %d %f' % (iter_, max_iter, l)

        # reduce learning rate
        if iter_ != 0 and iter_ % lr_reduce_interval == 0:
            solver.reset()
            solver.lr.set_value(solver.lr.get_value() *
                                np.array(lr_reduce_factor).astype(np.float32))

        # save
        if iter_ % save_interval == 0:
            print 'average loss:', np.mean(loss[-save_interval:])
            sys.setrecursionlimit(100000)
            pickle.dump(
                model,
                open(filename_save, 'wb'),
                protocol=pickle.HIGHEST_PROTOCOL,
            )
Esempio n. 7
0
def run(
    model_name='alexnet',
    layer_names=['data', 'conv1', 'conv2', 'conv3', 'conv4', 'conv5'],
    layer_sizes=[3, 96, 256, 384, 384, 256],
    batch_size=16,
    lr=1e+1,
    max_iter=20000,
    image_size=(227, 227),
    save_interval=1000,
):
    directory = './theanomodel'
    filename_train = './image/valid/*.JPEG'
    filename_save = '%s/%s_vlm_%s.pkl' % (directory, model_name, '_'.join(layer_names))
    lr_reduce_factor = 0.1
    lr_reduce_interval = 5000

    # load model
    img_mean = utils.load_mean_image()
    model, tparams = build_model(model_name, layer_names, layer_sizes)

    # build solver
    solver = solvers.SGD(
        model['loss_lm'],
        [model['data']],
        tparams.values(),
        lr=lr,
    )

    # get filename
    filename_train = glob.glob(filename_train)

    # train
    loss = []
    for iter_ in range(max_iter+1):
        # load images
        imgs = []
        for filename in np.random.choice(filename_train, batch_size):
            img = utils.load_image(filename, img_mean)
            img = utils.clip_image(img, image_size)
            imgs.append(img)
        imgs = np.array(imgs)

        # update
        l = solver.update(imgs)
        loss.append(l)
        print 'training VLM: %d / %d %f' % (iter_, max_iter, l)

        # reduce learning rate
        if iter_ != 0 and iter_ % lr_reduce_interval == 0:
            solver.reset()
            solver.lr.set_value(
                solver.lr.get_value() *
                np.array(lr_reduce_factor).astype(np.float32)
            )

        # save
        if iter_ % save_interval == 0:
            print 'average loss:', np.mean(loss[-save_interval:])
            sys.setrecursionlimit(100000)
            pickle.dump(
                model, 
                open(filename_save, 'wb'),                  
                protocol=pickle.HIGHEST_PROTOCOL,
            )
def run(filename_in, filename_out):
    # parameters
    lambda_layer = [1e-0, 1e-1, 1e-2, 1e-3, 1e-4]
    lambda_loss = [1, 10]
    learning_rate = 2**19
    momentum = 0.9
    max_iter = 1000

    model_name = 'alexnet'
    image_size = (227, 227)
    layer_names = [
        'data',
        'conv1',
        'conv2',
        'conv3',
        'conv4',
        'conv5',
    ]
    directory = './theanomodel'
    filename_reconstructor = ('%s/%s_vlm_%s_reconstructor.pkl' %
                              (directory, model_name, '_'.join(layer_names)))
    filename_cnn = ('%s/%s.model' % (directory, model_name))
    filename_mean_std = ('%s/%s_mean_std_data.pkl' % (directory, model_name))

    # compute target feature
    cnn = pickle.load(open(filename_cnn))
    img_mean = utils.load_mean_image()
    func = theano.function([cnn['data']], cnn['fc8'])
    img = utils.load_image(filename_in, img_mean)
    target = func(img[None, :, :, :]).flatten()

    # load reconstructor
    print 'loading reconstructor (which takes several tens of minutes)'
    reconstructor = pickle.load(open(filename_reconstructor))

    # set hyper-parameters
    reconstructor['target'].set_value(target.astype(np.float32))
    reconstructor['lambda_layer'].set_value(
        np.array(lambda_layer).astype(np.float32))
    reconstructor['lambda_loss'].set_value(
        np.array(lambda_loss).astype(np.float32))
    reconstructor['solver'].lr.set_value(learning_rate)
    reconstructor['solver'].momentum.set_value(momentum)

    # init solver
    ms = pickle.load(open(filename_mean_std))
    x_init = (np.random.randn(1, 3, image_size[0], image_size[1]) *
              ms['std'][None, :, None, None] +
              ms['mean'][None, :, None, None]).astype(np.float32)
    reconstructor['x'].set_value(x_init)
    reset_solver(reconstructor['solver'])

    # optimize
    for i in range(max_iter):
        loss = reconstructor['solver'].update()
        print 'iter %d / %d, loss %f' % (i, max_iter, loss)

    # save
    img = reconstructor['x'].get_value().squeeze()
    img = (img + img_mean.mean(1).mean(1)[:, None, None])
    img = img.swapaxes(0, 2).swapaxes(0, 1)
    img = np.clip(img, 0, 255).astype(np.uint8)
    scipy.misc.imsave(filename_out, img[:, :, ::-1])