'subsample':1, 'silent':1, 'nthread':27, # 'scale_pos_weight':y_build.mean(), # 'eval_metric':'auc', 'eval_metric':'logloss', 'objective':'binary:logistic', 'tree_method':'hist'} print("""#==== print param ======""") print('seed:', seed) #============================================================================== # prepare #============================================================================== train = pd.concat([utils.load_pred_None('trainT-0', W, True).sample(frac=.2), utils.load_pred_None('trainT-1', W, True).sample(frac=.2), utils.load_pred_None('trainT-2', W, True).sample(frac=.2) ], ignore_index=True, join='inner') sub_train = train[['order_id', 'y']] y_train = train['y'] X_train = train.drop('y', axis=1) del train; gc.collect() # drop id col = [c for c in X_train.columns if '_id' in c] + ['is_train'] col.remove('user_id') print('drop1',col) X_train.drop(col, axis=1, inplace=True) # keep user_id
'silent': 1, 'nthread': 28, 'eval_metric': 'logloss', 'objective': 'binary:logistic', 'tree_method': 'hist' } print("""#==== print param ======""") print('DATE:', DATE) print('seed:', seed) #============================================================================== # prepare #============================================================================== train = pd.concat([ utils.load_pred_None('trainT-0', 3), utils.load_pred_None('trainT-1', 3), utils.load_pred_None('trainT-2', 3) ], ignore_index=True) sub_train = train[['order_id', 'y']] y_train = train['y'] X_train = train.drop('y', axis=1) del train gc.collect() # drop id col = [c for c in X_train.columns if '_id' in c] + ['is_train'] col.remove('user_id') print('drop1', col)
'subsample':0.75, 'silent':1, 'nthread':28, 'eval_metric':'logloss', 'objective':'binary:logistic', 'tree_method':'hist' } print("""#==== print param ======""") print('DATE:', DATE) print('seed:', seed) #============================================================================== # prepare #============================================================================== train = pd.concat([utils.load_pred_None('trainT-0', 3), utils.load_pred_None('trainT-1', 3), utils.load_pred_None('trainT-2', 3) ], ignore_index=True) sub_train = train[['order_id', 'y']] y_train = train['y'] X_train = train.drop('y', axis=1) del train; gc.collect() # drop id col = [c for c in X_train.columns if '_id' in c] + ['is_train'] col.remove('user_id') print('drop1',col) X_train.drop(col, axis=1, inplace=True) # keep user_id