Esempio n. 1
0
    def __init__(self):
        from utils import log_netCDF_dataset_metadata

        logger.info(
            'MeanDynamicTopographyDataReader initializing. Loading MDT dataset: {}'
            .format(self.MDT_file_path))
        self.MDT_dataset = netCDF4.Dataset(self.MDT_file_path)
        logger.info('Successfully loaded MDT dataset: {}'.format(
            self.MDT_file_path))
        log_netCDF_dataset_metadata(self.MDT_dataset)

        self.lats = np.array(self.MDT_dataset.variables['lat'])
        self.lons = np.array(self.MDT_dataset.variables['lon'])

        self.mdt = np.array(self.MDT_dataset.variables['mdt'][0])
        self.u_geo = np.array(self.MDT_dataset.variables['u'][0])
        self.v_geo = np.array(self.MDT_dataset.variables['v'][0])

        self.latgrid_interp = None
        self.longrid_interp = None

        # Not even using the MDT dataset anymore.
        self.mdt_interp = None
        # self.interpolate_mdt_field()

        self.ugeo_interp = None
        self.vgeo_interp = None
        self.interpolate_u_geo_field()
Esempio n. 2
0
    def load_surface_wind_dataset(self):
        from utils import log_netCDF_dataset_metadata

        uwind_dataset_filepath, vwind_dataset_filepath = self.date_to_dataset_filepath(
            self.date)

        logger.info(
            'Loading NCEP u_wind dataset: {}'.format(uwind_dataset_filepath))
        self.u_wind_dataset = netCDF4.Dataset(uwind_dataset_filepath)
        logger.info('Successfully loaded NCEP u_wind dataset: {}'.format(
            uwind_dataset_filepath))
        log_netCDF_dataset_metadata(self.u_wind_dataset)

        logger.info(
            'Loading NCEP v_wind dataset: {}'.format(vwind_dataset_filepath))
        self.v_wind_dataset = netCDF4.Dataset(vwind_dataset_filepath)
        logger.info('Successfully loaded NCEP v_wind dataset: {}'.format(
            vwind_dataset_filepath))
        log_netCDF_dataset_metadata(self.v_wind_dataset)

        self.lats = np.array(self.u_wind_dataset.variables['lat'])
        self.lons = np.array(self.u_wind_dataset.variables['lon'])

        self.lons = np.append(self.lons, 360.0)

        # Numbering starts from 0 so we minus 1 to get the right index.
        self.u_wind = np.array(
            self.u_wind_dataset.variables['uwnd'][self.day_of_year - 1])
        self.v_wind = np.array(
            self.v_wind_dataset.variables['vwnd'][self.day_of_year - 1])

        self.u_wind = np.c_[self.u_wind, self.u_wind[:, 0]]
        self.v_wind = np.c_[self.v_wind, self.v_wind[:, 0]]
    def load_u_geo_dataset(self):
        from utils import log_netCDF_dataset_metadata

        dataset_filepath = self.date_to_u_geo_dataset_filepath(self.date)
        logger.info('Loading geostrophic velocity dataset: {}'.format(
            dataset_filepath))
        self.u_geo_dataset = netCDF4.Dataset(dataset_filepath)
        logger.info(
            'Successfully loaded geostrophic velocity dataset: {}'.format(
                dataset_filepath))
        log_netCDF_dataset_metadata(self.u_geo_dataset)

        self.lats = np.array(self.u_geo_dataset.variables['latitude'])
        self.lons = np.array(self.u_geo_dataset.variables['longitude'])
        self.u_geo = np.array(self.u_geo_dataset.variables['ugos'][0])
        self.v_geo = np.array(self.u_geo_dataset.variables['vgos'][0])
Esempio n. 4
0
    def load_temperature_dataset(self):
        from utils import log_netCDF_dataset_metadata

        dataset_filepath = self.temperature_dataset_filepath()
        logger.info('Loading temperature dataset: {}'.format(dataset_filepath))
        self.temperature_dataset = netCDF4.Dataset(dataset_filepath)
        logger.info('Successfully loaded temperature dataset: {}'.format(dataset_filepath))
        log_netCDF_dataset_metadata(self.temperature_dataset)

        self.lats = np.array(self.temperature_dataset.variables['lat'])
        self.lons = np.array(self.temperature_dataset.variables['lon'])
        self.depths = np.array(self.temperature_dataset.variables['depth'])

        field_var = 't_' + self.field_type

        self.temperature_data = np.array(self.temperature_dataset.variables[field_var])
Esempio n. 5
0
    def load_alpha_dataset(self):
        from utils import log_netCDF_dataset_metadata

        dataset_filepath = self.date_to_alpha_dataset_filepath(self.date)
        logger.info('Loading sea ice concentration dataset: {}'.format(
            dataset_filepath))
        self.alpha_dataset = netCDF4.Dataset(dataset_filepath)
        logger.info(
            'Successfully loaded sea ice concentration dataset: {}'.format(
                dataset_filepath))
        log_netCDF_dataset_metadata(self.alpha_dataset)

        self.lats = np.array(self.alpha_dataset.variables['latitude'])
        self.lons = np.array(self.alpha_dataset.variables['longitude'])
        self.xgrid = np.array(self.alpha_dataset.variables['xgrid'])
        self.ygrid = np.array(self.alpha_dataset.variables['ygrid'])
        self.alpha = np.array(
            self.alpha_dataset.variables['goddard_nt_seaice_conc'][0])
    def __init__(self, time_span, avg_period, grid_size, field_type, depth_levels):
        """
        :param time_span: Choose from '5564', '6574', '7584', '8594', '95A4', 'A5B2', 'decav', and 'all'.
        :param avg_period: Choose from annual ('00'), monthly ('01'-'12'), and seasonal ('13' for JFM, '14' for AMJ,
                           '15' for JAS, and '16' for OND).
        :param grid_size: Choose from '04', '01', and '5d'.
        :param field_type: Choose from 'an', 'mn', 'dd', 'ma', 'sd', 'se', 'oa', and 'gp'.
        :param depth_level:
        """
        self.neutral_density_dataset = None

        self.time_span = time_span
        self.avg_period = avg_period
        self.grid_size = grid_size
        self.field_type = field_type
        self.depth_levels = depth_levels

        self.grid_size_dir = None
        if grid_size == '04':
            self.grid_size_dir = '0.25'
        elif grid_size == '01':
            self.grid_size_dir = '1.00'
        elif grid_size == '5d':
            self.grid_size_dir = '5deg'

        self.lats = None
        self.lons = None

        logger.info('NeutralDensityDataset object initializing for time span {} and averaging period {}...'
                    .format(self.time_span, self.avg_period))

        self.lats = np.linspace(lat_min, lat_max, n_lat)
        self.lons = np.linspace(lon_min, lon_max, n_lon)

        self.neutral_density_field = np.zeros((len(self.depth_levels), len(self.lats), len(self.lons)))
        self.salinity_field = np.zeros((len(self.depth_levels), len(self.lats), len(self.lons)))
        self.temperature_field = np.zeros((len(self.depth_levels), len(self.lats), len(self.lons)))

        self.salinity_dataset = SalinityDataset(time_span, avg_period, grid_size, field_type)
        self.temperature_dataset = TemperatureDataset(time_span, avg_period, grid_size, field_type)

        # If dataset already exists and is stored, load it up.
        for i in range(len(self.depth_levels)):
            neutral_density_dataset_filepath = self.neutral_density_dataset_filepath(self.depth_levels[i])

            try:
                self.neutral_density_dataset = netCDF4.Dataset(neutral_density_dataset_filepath)
                log_netCDF_dataset_metadata(self.neutral_density_dataset)
                self.salinity_field[i] = np.array(self.neutral_density_dataset.variables['salinity'])
                self.temperature_field[i] = np.array(self.neutral_density_dataset.variables['temperature'])
                self.neutral_density_field[i] = np.array(self.neutral_density_dataset.variables['neutral_density'])
            except Exception as e:
                logger.error('{}'.format(e))
                logger.warning('{:s} not found. Neutral density field will now be computed...'
                               .format(neutral_density_dataset_filepath))
        return

        self.neutral_density_dataset = None
        self.salinity_field = np.zeros((len(self.lats), len(self.lons)))
        self.temperature_field = np.zeros((len(self.lats), len(self.lons)))
        self.neutral_density_field = np.zeros((len(self.lats), len(self.lons)))

        self.calculate_neutral_density_field()
        self.save_neutral_density_dataset()
def retroactively_compute_melting_freezing_rate():
    from constants import D_e, kappa

    # import constants
    # constants.output_dir_path = 'D:\\output\\'

    start_date = datetime.date(2011, 1, 1)
    end_date = datetime.date(2016, 12, 31)
    dates = date_range(start_date, end_date)

    # dates = []
    # for year in range(2011, 2016 + 1):
    #     start_date = datetime.date(year, 7, 1)
    #     end_date = datetime.date(year, 9, 30)
    #
    #     dates = dates + date_range(start_date, end_date)

    h_ice_dataset = SeaIceThicknessDataset(start_date)

    # Load mixed layer salinity maps from Pellichero et al. (2017, 2018).
    gamma_filepath = os.path.join(data_dir_path, 'Climatology_MLD_v2017.nc')
    logger.info('Loading gamma dataset: {}'.format(gamma_filepath))
    gamma_dataset = netCDF4.Dataset(gamma_filepath)

    lats_ml = np.array(gamma_dataset.variables['lat'])
    lons_ml = np.array(gamma_dataset.variables['lon'])
    mixed_layer_data = np.array(gamma_dataset.variables['ML_SA'])

    lats_ml_max = len(lats_ml) - 1
    lons_ml_max = len(lons_ml) - 1

    salinity_monthly_climo = [None] * 12
    for month in range(12):
        salinity_monthly_climo[month] = mixed_layer_data[month]

    try:
        tau_filepath = get_netCDF_filepath(field_type='daily', date=start_date)
        tau_dataset = netCDF4.Dataset(tau_filepath)
        lats = np.array(tau_dataset.variables['lat'])
        lons = np.array(tau_dataset.variables['lon'])
    except OSError as e:
        logger.error('{}'.format(e))
        logger.error('{:s} not found. Could not load lat, lon arrays.'.format(
            tau_filepath))

    alpha_avg_field = np.zeros((len(lats), len(lons)))
    alpha_day_field = np.zeros((len(lats), len(lons)))
    u_ice_avg_field = np.zeros((len(lats), len(lons)))
    u_ice_day_field = np.zeros((len(lats), len(lons)))
    v_ice_avg_field = np.zeros((len(lats), len(lons)))
    v_ice_day_field = np.zeros((len(lats), len(lons)))
    h_ice_avg_field = np.zeros((len(lats), len(lons)))
    h_ice_day_field = np.zeros((len(lats), len(lons)))
    zonal_div_avg_field = np.zeros((len(lats), len(lons)))
    zonal_div_day_field = np.zeros((len(lats), len(lons)))
    merid_div_avg_field = np.zeros((len(lats), len(lons)))
    merid_div_day_field = np.zeros((len(lats), len(lons)))
    div_avg_field = np.zeros((len(lats), len(lons)))
    div_day_field = np.zeros((len(lats), len(lons)))

    Ekman_term_avg_field = np.zeros((len(lats), len(lons)))
    Ekman_term_day_field = np.zeros((len(lats), len(lons)))
    geo_term_avg_field = np.zeros((len(lats), len(lons)))
    geo_term_day_field = np.zeros((len(lats), len(lons)))
    diffusion_term_avg_field = np.zeros((len(lats), len(lons)))
    diffusion_term_day_field = np.zeros((len(lats), len(lons)))

    salinity_avg_field = np.zeros((len(lats), len(lons)))
    salinity_day_field = np.zeros((len(lats), len(lons)))

    for date in dates:
        tau_filepath = get_netCDF_filepath(field_type='daily', date=date)

        logger.info('Averaging {:%b %d, %Y} ({:s})...'.format(
            date, tau_filepath))

        try:
            current_tau_dataset = netCDF4.Dataset(tau_filepath)
            log_netCDF_dataset_metadata(current_tau_dataset)
        except OSError as e:
            logger.error('{}'.format(e))
            logger.warning('{:s} not found. Proceeding without it...'.format(
                tau_filepath))
            continue

        alpha_daily_field = np.array(current_tau_dataset.variables['alpha'])
        u_ice_daily_field = np.array(current_tau_dataset.variables['ice_u'])
        v_ice_daily_field = np.array(current_tau_dataset.variables['ice_v'])

        u_geo_daily_field = np.array(current_tau_dataset.variables['geo_u'])
        v_geo_daily_field = np.array(current_tau_dataset.variables['geo_v'])

        # U_Ekman_daily_field = np.array(current_tau_dataset.variables['Ekman_U'])
        # V_Ekman_daily_field = np.array(current_tau_dataset.variables['Ekman_V'])
        U_Ekman_daily_field = D_e * np.array(
            current_tau_dataset.variables['Ekman_u'])
        V_Ekman_daily_field = D_e * np.array(
            current_tau_dataset.variables['Ekman_v'])

        # salinity_daily_field = np.array(current_tau_dataset.variables['salinity'])
        salinity_daily_field = salinity_monthly_climo[date.month - 1]
        # logger.info('salinity_daily_field: min = {:}, max = {:}, mean = {:}'
        #             .format(np.nanmin(salinity_daily_field), np.nanmax(salinity_daily_field),
        #                     np.nanmean(salinity_daily_field)))

        h_ice_daily_field = np.zeros((len(lats), len(lons)))
        zonal_div_daily_field = np.zeros((len(lats), len(lons)))
        merid_div_daily_field = np.zeros((len(lats), len(lons)))
        div_daily_field = np.zeros((len(lats), len(lons)))
        Ekman_term_daily_field = np.zeros((len(lats), len(lons)))
        geo_term_daily_field = np.zeros((len(lats), len(lons)))
        diffusion_term_daily_field = np.zeros((len(lats), len(lons)))

        salinity_interp_daily_field = np.zeros((len(lats), len(lons)))
        salinity_interp_daily_field[:] = np.nan

        # Load h_ice field for the day (i.e. the correct seasonal field).
        for i in range(len(lats)):
            for j in range(len(lons)):
                h_ice_daily_field[i][j] = h_ice_dataset.sea_ice_thickness(
                    i, j, date)

        i_max = len(lats) - 1
        j_max = len(lons) - 1

        for i in range(1, len(lats) - 1):
            lat = lats[i]
            # progress_percent = 100 * i / (len(lats) - 2)
            # logger.info('({:}, ice_div) lat = {:.2f}/{:.2f} ({:.1f}%)'.format(date, lat, -40, progress_percent))

            dx = distance(lats[i - 1], lons[0], lats[i + 1], lons[0])
            dy = distance(lats[i], lons[0], lats[i], lons[2])

            for j in range(len(lons)):
                lon = lons[j]

                if lon < 0:
                    lon_ml = lon + 360
                else:
                    lon_ml = lon

                # Taking modulus of j-1 and j+1 to get the correct index in the special cases of
                #  * j=0 (180 W) and need to use the value from j=j_max (180 E)
                #  * j=j_max (180 E) and need to use the value from j=0 (180 W)
                jm1 = (j - 1) % j_max
                jp1 = (j + 1) % j_max

                u_ice_i_jp1 = u_ice_daily_field[i][jp1]
                u_ice_i_jm1 = u_ice_daily_field[i][jm1]
                v_ice_ip1_j = v_ice_daily_field[i + 1][j]
                v_ice_im1_j = v_ice_daily_field[i - 1][j]

                alpha_i_jp1 = alpha_daily_field[i][jp1]
                alpha_i_jm1 = alpha_daily_field[i][jm1]
                alpha_ip1_j = alpha_daily_field[i + 1][j]
                alpha_im1_j = alpha_daily_field[i - 1][j]

                h_ice_i_jp1 = h_ice_daily_field[i][jp1]
                h_ice_i_jm1 = h_ice_daily_field[i][jm1]
                h_ice_ip1_j = h_ice_daily_field[i + 1][j]
                h_ice_im1_j = h_ice_daily_field[i - 1][j]

                idx_lat = np.abs(lats_ml - lat).argmin()
                idx_lon = np.abs(lons_ml - lon_ml).argmin()

                idx_lonp1 = (idx_lon + 1) % lons_ml_max
                idx_lonm1 = (idx_lon - 1) % lons_ml_max

                S_ij = salinity_daily_field[idx_lat][idx_lon]
                S_i_jp1 = salinity_daily_field[idx_lat][idx_lonp1]
                S_i_jm1 = salinity_daily_field[idx_lat][idx_lonm1]
                S_ip1_j = salinity_daily_field[idx_lat + 1][idx_lon]
                S_im1_j = salinity_daily_field[idx_lat - 1][idx_lon]

                salinity_interp_daily_field[i][j] = S_ij

                # S_ij = salinity_daily_field[i][j]
                # S_i_jp1 = salinity_daily_field[i][jp1]
                # S_i_jm1 = salinity_daily_field[i][jm1]
                # S_ip1_j = salinity_daily_field[i+1][j]
                # S_im1_j = salinity_daily_field[i-1][j]

                u_geo_ij = u_geo_daily_field[i][j]
                v_geo_ij = v_geo_daily_field[i][j]
                U_Ekman_ij = U_Ekman_daily_field[i][j]
                V_Ekman_ij = V_Ekman_daily_field[i][j]

                if not np.isnan(u_ice_i_jm1) and not np.isnan(u_ice_i_jp1):
                    div_x = (alpha_i_jp1 * h_ice_i_jp1 * u_ice_i_jp1 -
                             alpha_i_jm1 * h_ice_i_jm1 * u_ice_i_jm1) / dx
                    zonal_div_daily_field[i][j] = div_x
                else:
                    zonal_div_daily_field[i][j] = np.nan

                if not np.isnan(v_ice_im1_j) and not np.isnan(v_ice_ip1_j):
                    div_y = (alpha_ip1_j * h_ice_ip1_j * v_ice_ip1_j -
                             alpha_im1_j * h_ice_im1_j * v_ice_im1_j) / dy
                    merid_div_daily_field[i][j] = div_y
                else:
                    merid_div_daily_field[i][j] = np.nan

                if not np.isnan(zonal_div_daily_field[i][j]) and not np.isnan(
                        merid_div_daily_field[i][j]):
                    div_daily_field[i][j] = div_x + div_y
                else:
                    div_daily_field[i][j] = np.nan

                if not np.isnan(S_ij) and not np.isnan(S_i_jm1) and not np.isnan(S_i_jp1) and not np.isnan(S_ip1_j) \
                        and not np.isnan(S_im1_j):
                    dSdx = (S_i_jp1 - S_i_jm1) / dx
                    dSdy = (S_ip1_j - S_im1_j) / dy
                    del2_S = ((S_i_jp1 - 2 * S_ij + S_i_jm1) / dx**2) + (
                        (S_ip1_j - 2 * S_ij + S_im1_j) / dy**2)

                    Ekman_term_daily_field[i][j] = (U_Ekman_ij * dSdx +
                                                    V_Ekman_ij * dSdy) / S_ij
                    geo_term_daily_field[i][j] = (D_e / S_ij) * (
                        u_geo_ij * dSdx + v_geo_ij * dSdy)
                    diffusion_term_daily_field[i][j] = (kappa * D_e /
                                                        S_ij) * del2_S
                else:
                    Ekman_term_daily_field[i][j] = np.nan
                    geo_term_daily_field[i][j] = np.nan
                    diffusion_term_daily_field[i][j] = np.nan

                if np.isnan(alpha_daily_field[i]
                            [j]) or alpha_daily_field[i][j] < 0.15:
                    Ekman_term_daily_field[i][j] = np.nan
                    geo_term_daily_field[i][j] = np.nan
                    diffusion_term_daily_field[i][j] = np.nan

        alpha_avg_field = alpha_avg_field + np.nan_to_num(alpha_daily_field)
        alpha_daily_field[~np.isnan(alpha_daily_field)] = 1
        alpha_daily_field[np.isnan(alpha_daily_field)] = 0
        alpha_day_field = alpha_day_field + alpha_daily_field

        u_ice_avg_field = u_ice_avg_field + np.nan_to_num(u_ice_daily_field)
        u_ice_daily_field[~np.isnan(u_ice_daily_field)] = 1
        u_ice_daily_field[np.isnan(u_ice_daily_field)] = 0
        u_ice_day_field = u_ice_day_field + u_ice_daily_field

        v_ice_avg_field = v_ice_avg_field + np.nan_to_num(v_ice_daily_field)
        v_ice_daily_field[~np.isnan(v_ice_daily_field)] = 1
        v_ice_daily_field[np.isnan(v_ice_daily_field)] = 0
        v_ice_day_field = v_ice_day_field + v_ice_daily_field

        h_ice_avg_field = h_ice_avg_field + np.nan_to_num(h_ice_daily_field)
        h_ice_daily_field[~np.isnan(h_ice_daily_field)] = 1
        h_ice_daily_field[np.isnan(h_ice_daily_field)] = 0
        h_ice_day_field = h_ice_day_field + h_ice_daily_field

        zonal_div_avg_field = zonal_div_avg_field + np.nan_to_num(
            zonal_div_daily_field)
        zonal_div_daily_field[~np.isnan(zonal_div_daily_field)] = 1
        zonal_div_daily_field[np.isnan(zonal_div_daily_field)] = 0
        zonal_div_day_field = zonal_div_day_field + zonal_div_daily_field

        merid_div_avg_field = merid_div_avg_field + np.nan_to_num(
            merid_div_daily_field)
        merid_div_daily_field[~np.isnan(merid_div_daily_field)] = 1
        merid_div_daily_field[np.isnan(merid_div_daily_field)] = 0
        merid_div_day_field = merid_div_day_field + merid_div_daily_field

        div_avg_field = div_avg_field + np.nan_to_num(div_daily_field)
        div_daily_field[~np.isnan(div_daily_field)] = 1
        div_daily_field[np.isnan(div_daily_field)] = 0
        div_day_field = div_day_field + div_daily_field

        Ekman_term_avg_field = Ekman_term_avg_field + np.nan_to_num(
            Ekman_term_daily_field)
        Ekman_term_daily_field[~np.isnan(Ekman_term_daily_field)] = 1
        Ekman_term_daily_field[np.isnan(Ekman_term_daily_field)] = 0
        Ekman_term_day_field = Ekman_term_day_field + Ekman_term_daily_field

        geo_term_avg_field = geo_term_avg_field + np.nan_to_num(
            geo_term_daily_field)
        geo_term_daily_field[~np.isnan(geo_term_daily_field)] = 1
        geo_term_daily_field[np.isnan(geo_term_daily_field)] = 0
        geo_term_day_field = geo_term_day_field + geo_term_daily_field

        diffusion_term_avg_field = diffusion_term_avg_field + np.nan_to_num(
            diffusion_term_daily_field)
        diffusion_term_daily_field[~np.isnan(diffusion_term_daily_field)] = 1
        diffusion_term_daily_field[np.isnan(diffusion_term_daily_field)] = 0
        diffusion_term_day_field = diffusion_term_day_field + diffusion_term_daily_field

        # logger.info('salinity_interp_daily_field: min = {:}, max = {:}, mean = {:}'
        #             .format(np.nanmin(salinity_interp_daily_field), np.nanmax(salinity_interp_daily_field),
        #                     np.nanmean(salinity_interp_daily_field)))

        salinity_avg_field = salinity_avg_field + np.nan_to_num(
            salinity_interp_daily_field)
        salinity_interp_daily_field[~np.isnan(salinity_interp_daily_field)] = 1
        salinity_interp_daily_field[np.isnan(salinity_interp_daily_field)] = 0
        salinity_day_field = salinity_day_field + salinity_interp_daily_field

        # logger.info('salinity_avg_field: min = {:}, max = {:}, mean = {:}'
        #             .format(np.nanmin(salinity_avg_field), np.nanmax(salinity_avg_field),
        #                     np.nanmean(salinity_avg_field)))
        # logger.info('salinity_day_field: min = {:}, max = {:}, mean = {:}'
        #             .format(np.nanmin(salinity_day_field), np.nanmax(salinity_day_field),
        #                     np.nanmean(salinity_day_field)))

    alpha_avg_field = np.divide(alpha_avg_field, alpha_day_field)
    u_ice_avg_field = np.divide(u_ice_avg_field, u_ice_day_field)
    v_ice_avg_field = np.divide(v_ice_avg_field, v_ice_day_field)
    h_ice_avg_field = np.divide(h_ice_avg_field, h_ice_day_field)
    zonal_div_avg_field = np.divide(zonal_div_avg_field, zonal_div_day_field)
    merid_div_avg_field = np.divide(merid_div_avg_field, merid_div_day_field)
    div_avg_field = 3600 * 24 * 365 * np.divide(div_avg_field, div_day_field)
    Ekman_term_avg_field = 3600 * 24 * 365 * np.divide(Ekman_term_avg_field,
                                                       Ekman_term_day_field)
    geo_term_avg_field = 3600 * 24 * 365 * np.divide(geo_term_avg_field,
                                                     geo_term_day_field)
    diffusion_term_avg_field = 3600 * 24 * 365 * np.divide(
        diffusion_term_avg_field, diffusion_term_day_field)
    salinity_avg_field = np.divide(salinity_avg_field, salinity_day_field)

    logger.info('salinity_avg_field: min = {:}, max = {:}, mean = {:}'.format(
        np.nanmin(salinity_avg_field), np.nanmax(salinity_avg_field),
        np.nanmean(salinity_avg_field)))
    logger.info('salinity_day_field: min = {:}, max = {:}, mean = {:}'.format(
        np.nanmin(salinity_day_field), np.nanmax(salinity_day_field),
        np.nanmean(salinity_day_field)))

    nc_dir = os.path.dirname(output_dir_path)
    nc_filepath = os.path.join(
        nc_dir,
        'melting_freezing_rate_{:}_{:}.nc'.format(start_date, end_date))

    if not os.path.exists(nc_dir):
        logger.info('Creating directory: {:s}'.format(nc_dir))
        os.makedirs(nc_dir)

    logger.info('Saving fields to netCDF file: {:s}'.format(nc_filepath))

    tau_dataset = netCDF4.Dataset(nc_filepath, 'w')

    tau_dataset.title = 'Melting and freezing rates in the Antarctic sea ice zone'
    tau_dataset.institution = 'Department of Earth, Atmospheric, and Planetary Science, ' \
                              'Massachusetts Institute of Technology'

    tau_dataset.createDimension('time', None)
    tau_dataset.createDimension('lat', len(lats))
    tau_dataset.createDimension('lon', len(lons))

    # TODO: Actually store a date.
    time_var = tau_dataset.createVariable('time', np.float64, ('time', ))
    time_var.units = 'hours since 0001-01-01 00:00:00'
    time_var.calendar = 'gregorian'

    lat_var = tau_dataset.createVariable('lat', np.float32, ('lat', ))
    lat_var.units = 'degrees south'
    lat_var[:] = lats

    lon_var = tau_dataset.createVariable('lon', np.float32, ('lon', ))
    lat_var.units = 'degrees west/east'
    lon_var[:] = lons

    var_fields = {
        'alpha': alpha_avg_field,
        'u_ice': u_ice_avg_field,
        'v_ice': v_ice_avg_field,
        'h_ice': h_ice_avg_field,
        'zonal_div': zonal_div_avg_field,
        'merid_div': merid_div_avg_field,
        'div': div_avg_field,
        'Ekman_term': Ekman_term_avg_field,
        'geo_term': geo_term_avg_field,
        'diffusion_term': diffusion_term_avg_field,
        'salinity': salinity_avg_field
    }

    for var_name in var_fields.keys():
        field_var = tau_dataset.createVariable(var_name,
                                               float, ('lat', 'lon'),
                                               zlib=True)
        field_var[:] = var_fields[var_name]

    tau_dataset.close()
def retroactively_compute_sea_ice_advection():
    start_date = datetime.date(2005, 1, 1)
    end_date = datetime.date(2005, 12, 31)
    dates = date_range(start_date, end_date)

    h_ice_dataset = SeaIceThicknessDataset(start_date)

    import constants
    constants.output_dir_path = 'D:\\output\\'

    try:
        tau_filepath = get_netCDF_filepath(field_type='daily', date=start_date)
        tau_dataset = netCDF4.Dataset(tau_filepath)
        lats = np.array(tau_dataset.variables['lat'])
        lons = np.array(tau_dataset.variables['lon'])
    except OSError as e:
        logger.error('{}'.format(e))
        logger.error('{:s} not found. Could not load lat, lon arrays.'.format(
            tau_filepath))

    alpha_avg_field = np.zeros((len(lats), len(lons)))
    alpha_day_field = np.zeros((len(lats), len(lons)))
    u_ice_avg_field = np.zeros((len(lats), len(lons)))
    u_ice_day_field = np.zeros((len(lats), len(lons)))
    v_ice_avg_field = np.zeros((len(lats), len(lons)))
    v_ice_day_field = np.zeros((len(lats), len(lons)))
    h_ice_avg_field = np.zeros((len(lats), len(lons)))
    h_ice_day_field = np.zeros((len(lats), len(lons)))
    zonal_div_avg_field = np.zeros((len(lats), len(lons)))
    zonal_div_day_field = np.zeros((len(lats), len(lons)))
    merid_div_avg_field = np.zeros((len(lats), len(lons)))
    merid_div_day_field = np.zeros((len(lats), len(lons)))
    div_avg_field = np.zeros((len(lats), len(lons)))
    div_day_field = np.zeros((len(lats), len(lons)))

    hu_dadx_avg_field = np.zeros((len(lats), len(lons)))
    au_dhdx_avg_field = np.zeros((len(lats), len(lons)))
    ah_dudx_avg_field = np.zeros((len(lats), len(lons)))
    hv_dady_avg_field = np.zeros((len(lats), len(lons)))
    av_dhdy_avg_field = np.zeros((len(lats), len(lons)))
    ah_dvdy_avg_field = np.zeros((len(lats), len(lons)))
    hu_dadx_day_field = np.zeros((len(lats), len(lons)))
    au_dhdx_day_field = np.zeros((len(lats), len(lons)))
    ah_dudx_day_field = np.zeros((len(lats), len(lons)))
    hv_dady_day_field = np.zeros((len(lats), len(lons)))
    av_dhdy_day_field = np.zeros((len(lats), len(lons)))
    ah_dvdy_day_field = np.zeros((len(lats), len(lons)))

    div2_avg_field = np.zeros((len(lats), len(lons)))
    div2_day_field = np.zeros((len(lats), len(lons)))

    for date in dates:
        tau_filepath = get_netCDF_filepath(field_type='daily', date=date)

        logger.info('Averaging {:%b %d, %Y} ({:s})...'.format(
            date, tau_filepath))

        try:
            current_tau_dataset = netCDF4.Dataset(tau_filepath)
            log_netCDF_dataset_metadata(current_tau_dataset)
        except OSError as e:
            logger.error('{}'.format(e))
            logger.warning('{:s} not found. Proceeding without it...'.format(
                tau_filepath))
            continue

        alpha_daily_field = np.array(current_tau_dataset.variables['alpha'])
        u_ice_daily_field = np.array(current_tau_dataset.variables['ice_u'])
        v_ice_daily_field = np.array(current_tau_dataset.variables['ice_v'])

        h_ice_daily_field = np.zeros((len(lats), len(lons)))
        zonal_div_daily_field = np.zeros((len(lats), len(lons)))
        merid_div_daily_field = np.zeros((len(lats), len(lons)))
        div_daily_field = np.zeros((len(lats), len(lons)))

        hu_dadx_daily_field = np.zeros((len(lats), len(lons)))
        au_dhdx_daily_field = np.zeros((len(lats), len(lons)))
        ah_dudx_daily_field = np.zeros((len(lats), len(lons)))
        hv_dady_daily_field = np.zeros((len(lats), len(lons)))
        av_dhdy_daily_field = np.zeros((len(lats), len(lons)))
        ah_dvdy_daily_field = np.zeros((len(lats), len(lons)))

        div2_daily_field = np.zeros((len(lats), len(lons)))

        # Load h_ice field for the day (i.e. the correct seasonal field).
        for i in range(len(lats)):
            for j in range(len(lons)):
                h_ice_daily_field[i][j] = h_ice_dataset.sea_ice_thickness(
                    i, j, date)

        # import astropy.convolution
        # kernel = astropy.convolution.Box2DKernel(10)
        # alpha_daily_field = astropy.convolution.convolve(alpha_daily_field, kernel, boundary='wrap')
        # h_ice_daily_field = astropy.convolution.convolve(h_ice_daily_field, kernel, boundary='wrap')
        # u_ice_daily_field = astropy.convolution.convolve(u_ice_daily_field, kernel, boundary='wrap')
        # v_ice_daily_field = astropy.convolution.convolve(v_ice_daily_field, kernel, boundary='wrap')

        i_max = len(lats) - 1
        j_max = len(lons) - 1

        for i in range(1, len(lats) - 1):
            # lat = lats[i]
            # progress_percent = 100 * i / (len(lats) - 2)
            # logger.info('({:}, ice_div) lat = {:.2f}/{:.2f} ({:.1f}%)'.format(date, lat, -40, progress_percent))

            dx = distance(lats[i - 1], lons[0], lats[i + 1], lons[0])
            dy = distance(lats[i], lons[0], lats[i], lons[2])

            for j in range(1, len(lons) - 1):
                # Taking modulus of j-1 and j+1 to get the correct index in the special cases of
                #  * j=0 (180 W) and need to use the value from j=j_max (180 E)
                #  * j=j_max (180 E) and need to use the value from j=0 (180 W)
                jm1 = (j - 1) % j_max
                jp1 = (j + 1) % j_max

                u_ice_ij = u_ice_daily_field[i][j]
                u_ice_i_jp1 = u_ice_daily_field[i][jp1]
                u_ice_i_jm1 = u_ice_daily_field[i][jm1]
                u_ice_ip1_j = u_ice_daily_field[i + 1][j]
                u_ice_im1_j = u_ice_daily_field[i - 1][j]

                v_ice_ij = v_ice_daily_field[i][j]
                v_ice_ip1_j = v_ice_daily_field[i + 1][j]
                v_ice_im1_j = v_ice_daily_field[i - 1][j]
                v_ice_i_jp1 = v_ice_daily_field[i][jp1]
                v_ice_i_jm1 = v_ice_daily_field[i][jm1]

                alpha_ij = alpha_daily_field[i][j]
                alpha_i_jp1 = alpha_daily_field[i][jp1]
                alpha_i_jm1 = alpha_daily_field[i][jm1]
                alpha_ip1_j = alpha_daily_field[i + 1][j]
                alpha_im1_j = alpha_daily_field[i - 1][j]

                h_ice_ij = h_ice_daily_field[i][j]
                h_ice_i_jp1 = h_ice_daily_field[i][jp1]
                h_ice_i_jm1 = h_ice_daily_field[i][jm1]
                h_ice_ip1_j = h_ice_daily_field[i + 1][j]
                h_ice_im1_j = h_ice_daily_field[i - 1][j]

                if not np.isnan(u_ice_i_jm1) and not np.isnan(u_ice_i_jp1):
                    div_x = (alpha_i_jp1 * h_ice_i_jp1 * u_ice_i_jp1 -
                             alpha_i_jm1 * h_ice_i_jm1 * u_ice_i_jm1) / dx
                    zonal_div_daily_field[i][j] = div_x
                else:
                    zonal_div_daily_field[i][j] = np.nan

                if not np.isnan(v_ice_im1_j) and not np.isnan(v_ice_ip1_j):
                    div_y = (alpha_ip1_j * h_ice_ip1_j * v_ice_ip1_j -
                             alpha_im1_j * h_ice_im1_j * v_ice_im1_j) / dy
                    merid_div_daily_field[i][j] = div_y
                else:
                    merid_div_daily_field[i][j] = np.nan

                if not np.isnan(zonal_div_daily_field[i][j]) and not np.isnan(
                        merid_div_daily_field[i][j]):
                    div_daily_field[i][j] = C_fw * (div_x + div_y)
                else:
                    div_daily_field[i][j] = np.nan

                if not np.isnan(alpha_i_jm1) and not np.isnan(alpha_i_jp1):
                    hu_dadx_daily_field[i][j] = h_ice_ij * u_ice_ij * (
                        alpha_i_jp1 - alpha_i_jm1) / dx
                else:
                    hu_dadx_daily_field[i][j] = np.nan

                if not np.isnan(h_ice_i_jm1) and not np.isnan(h_ice_i_jp1):
                    au_dhdx_daily_field[i][j] = alpha_ij * u_ice_ij * (
                        h_ice_i_jp1 - h_ice_i_jm1) / dx
                else:
                    au_dhdx_daily_field[i][j] = np.nan

                if not np.isnan(u_ice_i_jm1) and not np.isnan(u_ice_i_jp1):
                    ah_dudx_daily_field[i][j] = alpha_ij * h_ice_ij * (
                        u_ice_i_jp1 - u_ice_i_jm1) / dx
                else:
                    ah_dudx_daily_field[i][j] = np.nan

                if not np.isnan(alpha_im1_j) and not np.isnan(alpha_ip1_j):
                    hv_dady_daily_field[i][j] = h_ice_ij * v_ice_ij * (
                        alpha_ip1_j - alpha_im1_j) / dy
                else:
                    hv_dady_daily_field[i][j] = np.nan

                if not np.isnan(h_ice_im1_j) and not np.isnan(h_ice_ip1_j):
                    av_dhdy_daily_field[i][j] = alpha_ij * v_ice_ij * (
                        h_ice_ip1_j - h_ice_im1_j) / dy
                else:
                    av_dhdy_daily_field[i][j] = np.nan

                if not np.isnan(v_ice_im1_j) and not np.isnan(v_ice_ip1_j):
                    ah_dvdy_daily_field[i][j] = alpha_ij * h_ice_ij * (
                        v_ice_ip1_j - v_ice_im1_j) / dy
                else:
                    ah_dvdy_daily_field[i][j] = np.nan

                div2_daily_field[i][j] = hu_dadx_daily_field[i][j] + au_dhdx_daily_field[i][j] \
                                         + ah_dudx_daily_field[i][j] + hv_dady_daily_field[i][j] \
                                         + av_dhdy_daily_field[i][j] + ah_dvdy_daily_field[i][j]

        # import astropy.convolution
        # kernel = astropy.convolution.Box2DKernel(10)
        # div_daily_field = astropy.convolution.convolve(div_daily_field, kernel, boundary='wrap')

        alpha_avg_field = alpha_avg_field + np.nan_to_num(alpha_daily_field)
        alpha_daily_field[~np.isnan(alpha_daily_field)] = 1
        alpha_daily_field[np.isnan(alpha_daily_field)] = 0
        alpha_day_field = alpha_day_field + alpha_daily_field

        u_ice_avg_field = u_ice_avg_field + np.nan_to_num(u_ice_daily_field)
        u_ice_daily_field[~np.isnan(u_ice_daily_field)] = 1
        u_ice_daily_field[np.isnan(u_ice_daily_field)] = 0
        u_ice_day_field = u_ice_day_field + u_ice_daily_field

        v_ice_avg_field = v_ice_avg_field + np.nan_to_num(v_ice_daily_field)
        v_ice_daily_field[~np.isnan(v_ice_daily_field)] = 1
        v_ice_daily_field[np.isnan(v_ice_daily_field)] = 0
        v_ice_day_field = v_ice_day_field + v_ice_daily_field

        h_ice_avg_field = h_ice_avg_field + np.nan_to_num(h_ice_daily_field)
        h_ice_daily_field[~np.isnan(h_ice_daily_field)] = 1
        h_ice_daily_field[np.isnan(h_ice_daily_field)] = 0
        h_ice_day_field = h_ice_day_field + h_ice_daily_field

        zonal_div_avg_field = zonal_div_avg_field + np.nan_to_num(
            zonal_div_daily_field)
        zonal_div_daily_field[~np.isnan(zonal_div_daily_field)] = 1
        zonal_div_daily_field[np.isnan(zonal_div_daily_field)] = 0
        zonal_div_day_field = zonal_div_day_field + zonal_div_daily_field

        merid_div_avg_field = merid_div_avg_field + np.nan_to_num(
            merid_div_daily_field)
        merid_div_daily_field[~np.isnan(merid_div_daily_field)] = 1
        merid_div_daily_field[np.isnan(merid_div_daily_field)] = 0
        merid_div_day_field = merid_div_day_field + merid_div_daily_field

        div_avg_field = div_avg_field + np.nan_to_num(div_daily_field)
        div_daily_field[~np.isnan(div_daily_field)] = 1
        div_daily_field[np.isnan(div_daily_field)] = 0
        div_day_field = div_day_field + div_daily_field

        hu_dadx_avg_field = hu_dadx_avg_field + np.nan_to_num(
            hu_dadx_daily_field)
        hu_dadx_daily_field[~np.isnan(hu_dadx_daily_field)] = 1
        hu_dadx_daily_field[np.isnan(hu_dadx_daily_field)] = 0
        hu_dadx_day_field = hu_dadx_day_field + hu_dadx_daily_field

        au_dhdx_avg_field = au_dhdx_avg_field + np.nan_to_num(
            au_dhdx_daily_field)
        au_dhdx_daily_field[~np.isnan(au_dhdx_daily_field)] = 1
        au_dhdx_daily_field[np.isnan(au_dhdx_daily_field)] = 0
        au_dhdx_day_field = au_dhdx_day_field + au_dhdx_daily_field

        ah_dudx_avg_field = ah_dudx_avg_field + np.nan_to_num(
            ah_dudx_daily_field)
        ah_dudx_daily_field[~np.isnan(ah_dudx_daily_field)] = 1
        ah_dudx_daily_field[np.isnan(ah_dudx_daily_field)] = 0
        ah_dudx_day_field = ah_dudx_day_field + ah_dudx_daily_field

        hv_dady_avg_field = hv_dady_avg_field + np.nan_to_num(
            hv_dady_daily_field)
        hv_dady_daily_field[~np.isnan(hv_dady_daily_field)] = 1
        hv_dady_daily_field[np.isnan(hv_dady_daily_field)] = 0
        hv_dady_day_field = hv_dady_day_field + hv_dady_daily_field

        av_dhdy_avg_field = av_dhdy_avg_field + np.nan_to_num(
            av_dhdy_daily_field)
        av_dhdy_daily_field[~np.isnan(av_dhdy_daily_field)] = 1
        av_dhdy_daily_field[np.isnan(av_dhdy_daily_field)] = 0
        av_dhdy_day_field = av_dhdy_day_field + av_dhdy_daily_field

        ah_dvdy_avg_field = ah_dvdy_avg_field + np.nan_to_num(
            ah_dvdy_daily_field)
        ah_dvdy_daily_field[~np.isnan(ah_dvdy_daily_field)] = 1
        ah_dvdy_daily_field[np.isnan(ah_dvdy_daily_field)] = 0
        ah_dvdy_day_field = ah_dvdy_day_field + ah_dvdy_daily_field

        div2_avg_field = div2_avg_field + np.nan_to_num(div2_daily_field)
        div2_daily_field[~np.isnan(div2_daily_field)] = 1
        div2_daily_field[np.isnan(div2_daily_field)] = 0
        div2_day_field = div2_day_field + div2_daily_field

    alpha_avg_field = np.divide(alpha_avg_field, alpha_day_field)
    u_ice_avg_field = np.divide(u_ice_avg_field, u_ice_day_field)
    v_ice_avg_field = np.divide(v_ice_avg_field, v_ice_day_field)
    h_ice_avg_field = np.divide(h_ice_avg_field, h_ice_day_field)
    zonal_div_avg_field = np.divide(zonal_div_avg_field, zonal_div_day_field)
    merid_div_avg_field = np.divide(merid_div_avg_field, merid_div_day_field)
    div_avg_field = 3600 * 24 * 365 * np.divide(div_avg_field, div_day_field)

    hu_dadx_avg_field = 3600 * 24 * 365 * np.divide(hu_dadx_avg_field,
                                                    hu_dadx_day_field)
    au_dhdx_avg_field = 3600 * 24 * 365 * np.divide(au_dhdx_avg_field,
                                                    au_dhdx_day_field)
    ah_dudx_avg_field = 3600 * 24 * 365 * np.divide(ah_dudx_avg_field,
                                                    ah_dudx_day_field)
    hv_dady_avg_field = 3600 * 24 * 365 * np.divide(hv_dady_avg_field,
                                                    hv_dady_day_field)
    av_dhdy_avg_field = 3600 * 24 * 365 * np.divide(av_dhdy_avg_field,
                                                    av_dhdy_day_field)
    ah_dvdy_avg_field = 3600 * 24 * 365 * np.divide(ah_dvdy_avg_field,
                                                    ah_dvdy_day_field)

    div2_avg_field = 3600 * 24 * 365 * np.divide(div2_avg_field,
                                                 div2_day_field)

    nc_dir = os.path.dirname(output_dir_path)
    nc_filepath = os.path.join(
        nc_dir, 'ice_flux_div_{:}_{:}.nc'.format(start_date, end_date))

    if not os.path.exists(nc_dir):
        logger.info('Creating directory: {:s}'.format(nc_dir))
        os.makedirs(nc_dir)

    logger.info('Saving fields to netCDF file: {:s}'.format(nc_filepath))

    tau_dataset = netCDF4.Dataset(nc_filepath, 'w')

    tau_dataset.title = 'Ice flux divergence in the Antarctic sea ice zone'
    tau_dataset.institution = 'Department of Earth, Atmospheric, and Planetary Science, ' \
                              'Massachusetts Institute of Technology'

    tau_dataset.createDimension('time', None)
    tau_dataset.createDimension('lat', len(lats))
    tau_dataset.createDimension('lon', len(lons))

    # TODO: Actually store a date.
    time_var = tau_dataset.createVariable('time', np.float64, ('time', ))
    time_var.units = 'hours since 0001-01-01 00:00:00'
    time_var.calendar = 'gregorian'

    lat_var = tau_dataset.createVariable('lat', np.float32, ('lat', ))
    lat_var.units = 'degrees south'
    lat_var[:] = lats

    lon_var = tau_dataset.createVariable('lon', np.float32, ('lon', ))
    lat_var.units = 'degrees west/east'
    lon_var[:] = lons

    var_fields = {
        'alpha': alpha_avg_field,
        'u_ice': u_ice_avg_field,
        'v_ice': v_ice_avg_field,
        'h_ice': h_ice_avg_field,
        'zonal_div': zonal_div_avg_field,
        'merid_div': merid_div_avg_field,
        'div': div_avg_field,
        'hu_dadx': hu_dadx_avg_field,
        'au_dhdx': au_dhdx_avg_field,
        'ah_dudx': ah_dudx_avg_field,
        'hv_dady': hv_dady_avg_field,
        'av_dhdy': av_dhdy_avg_field,
        'ah_dvdy': ah_dvdy_avg_field,
        'div2': div2_avg_field
    }

    for var_name in var_fields.keys():
        field_var = tau_dataset.createVariable(var_name,
                                               float, ('lat', 'lon'),
                                               zlib=True)
        field_var[:] = var_fields[var_name]

    tau_dataset.close()