def main(): traci.start(sumoCmd) simulation_step = 0 atom_time = 30 yell_time = 3 traffic_data = [] controlTLIds = "0" phaseDefs = ['GrrrGrrr', 'rGrrrGrr', 'rrGrrrGr', 'rrrGrrrG'] yelloPhases = ['yrrryrrr', 'ryrrryrr', 'rryrrryr', 'rrryrrry'] index = 0 while simulation_step < 864000: ryg = yelloPhases[index % 4] traci.trafficlight.setRedYellowGreenState(controlTLIds, ryg) for j in range(yell_time): traci.simulationStep() ryg = phaseDefs[index % 4] traci.trafficlight.setRedYellowGreenState(controlTLIds, ryg) for j in range(atom_time-yell_time): traci.simulationStep() # for _ in range(ato_time): # traci.simulationStep() simulation_step = simulation_step + atom_time index += 1 traffic_data.append(measure_traffic_step(controlTLIds,simulation_step)) traffic_data = pd.DataFrame(traffic_data) traffic_data.to_csv("/home/hjj/exp_test_v2/Test/TestData/real/static_real.csv") traci.close() collect_tripinfo(trip_file,'/home/hjj/exp_test_v2/Test/TestData/real/static_real')
def main(): traci.start(sumoCmd) agent = Agent(traci, True) traci.close() # start simulation traci.start(sumoCmd) agent.reset() simulation_steps = 0 traffic_data = [] yell_time = 3 atom_time = 30 controlTLIds = "0" while simulation_steps < 60000: traffic_data.append( measure_traffic_step(controlTLIds, simulation_steps)) agent.state = agent._getState() action, current_phase = agent.agentAct() if action == current_phase: agent.setRYG(action, False) for j in range(atom_time): traci.simulationStep() else: agent.setRYG(current_phase, True) for j in range(yell_time): traci.simulationStep() agent.setRYG(action, False) for j in range(atom_time - yell_time): traci.simulationStep() agent._getReward() # stop training simulation_steps += atom_time # The END of simulationSteps loop traci.close() traffic_data = pd.DataFrame(traffic_data) traffic_data.to_csv( "/home/hjj/exp_test/Test/TestData/near_unba/a2c/interval30/a2c_near_unba_30_new.csv" ) collect_tripinfo( trip_file, '/home/hjj/exp_test/Test/TestData/near_unba/a2c/interval30/a2c_near_unba_30_new' )
def main(): traci.start(sumoCmd) simulation_step = 0 ato_time = 30 traffic_data = [] controlTLIds = "0" while simulation_step < 6000: for _ in range(ato_time): traci.simulationStep() simulation_step = simulation_step + ato_time traffic_data.append(measure_traffic_step(controlTLIds, simulation_step)) traffic_data = pd.DataFrame(traffic_data) traffic_data.to_csv("run_data/static_over.csv") traci.close() collect_tripinfo(trip_file, 'run_data/static_over')
def main(): traci.start(sumoCmd) agent = Agent(traci, True) traci.close() # start simulation traci.start(sumoCmd) agent.reset() simulation_steps = 0 traffic_data = [] yell_time = 3 atom_time = 30 controlTLIds = "0" while simulation_steps < 864000: traffic_data.append( measure_traffic_step(controlTLIds, simulation_steps)) action, current_phase = agent.agentAct() if action == current_phase: agent.setRYG(action, False) for j in range(atom_time): traci.simulationStep() else: agent.setRYG(current_phase, True) for j in range(yell_time): traci.simulationStep() agent.setRYG(action, False) for j in range(atom_time - yell_time): traci.simulationStep() agent.agentCulReward(is_sim=True) # stop training simulation_steps += atom_time # The END of simulationSteps loop traci.close() traffic_data = pd.DataFrame(traffic_data) traffic_data.to_csv( "/home/hjj/exp_test_v2/Test/TestData/real/dqn_real.csv") collect_tripinfo(trip_file, '/home/hjj/exp_test_v2/Test/TestData/real/dqn_real')