Esempio n. 1
0
    def __getitem__(self, idx):
        raw = rawpy.imread(self.input_paths[idx])
        raw_img = utils.pack_raw(raw) * self.ratios[idx]
        raw_img = np.clip(raw_img, 0, 1)

        H, W = raw_img.shape[0], raw_img.shape[1]

        rand_x = np.random.randint(0, W - 512)
        rand_y = np.random.randint(0, H - 512)

        # use random patch of size 512x512 from input
        img = raw_img[rand_y:rand_y + 512, rand_x:rand_x + 512, :]

        img = cv2.resize(img, (256, 256), cv2.INTER_LINEAR)
        img = img.transpose((2, 0, 1))
        img = torch.from_numpy(img)

        # use random patch of size 512x512 from gt
        raw_gt = rawpy.imread(self.gt_paths[idx])
        gt_img = utils.pack_raw(raw_gt)

        gt_img = gt_img[rand_y:rand_y + 512, rand_x:rand_x + 512, :]
        gt_img = cv2.resize(gt_img, (256, 256), cv2.INTER_LINEAR)
        gt_img = gt_img.transpose((2, 0, 1))
        gt_img = torch.from_numpy(gt_img)

        return img, gt_img
    def __getitem__(self, idx):
        raw = rawpy.imread(self.input_paths[idx])
        raw_img = utils.pack_raw(raw) * self.ratios[idx]
        raw_img = np.clip(raw_img, 0, 1)
        
        # use random patch of size 512x512 from input 
        H, W = raw_img.shape[0], raw_img.shape[1]
        
        rand_x = np.random.randint(0, W - 512)
        rand_y = np.random.randint(0, H - 512)
        
        img = raw_img[rand_y: rand_y + 512, rand_x: rand_x + 512, :]
        
        img = torch.from_numpy(img.copy())
        
        img = img.to(self.device)
        img = img.permute(2, 0, 1)
       
        img = self.buildInput(img)

        preprocess_gt_path = self.gt_paths[idx].split('/')[-1].split('.')[0]
        gt_img = cv2.imread('dataset/gt/' + preprocess_gt_path + '.png')
        print(gt_img)
        gt_img = cv2.cvtColor(gt_img, cv2.COLOR_BGR2RGB)
        gt_img = gt_img/255.

        xx = rand_x*2
        yy = rand_y*2
        
        gt_img = gt_img[yy: yy+ 512*2, xx: xx + 512*2, :]
    
        gt_img = torch.from_numpy(gt_img.copy())
        gt_img = gt_img.permute(2, 0, 1)
        return img, gt_img
def read_input(path, ratio = 100):
    inp_raw = rawpy.imread(path)
    inp = utils.pack_raw(inp_raw)
    
    inp = inp * ratio 
    inp = np.clip(inp, 0, 1)
    inp = inp.transpose(2, 0, 1)
    inp_tensor = torch.Tensor(inp)
    inp_tensor = inp_tensor.unsqueeze(0)
    return inp_tensor
Esempio n. 4
0
 def __getitem__(self, idx):
     raw_path = self.raw_dir[idx]
     raw_image = np.asarray(imageio.imread(raw_path))
     if self.in_nc == 4:
         raw_image = pack_raw(raw_image).astype(np.float32) / (4 * 255)
     else:
         raw_image = pack_raw_v2(raw_image).astype(np.float32) / (4 * 255)
     raw_image = torch.tensor(raw_image)
     img_path = self.dslr_dir[idx]
     dslr_image = imageio.imread(img_path)
     return raw_image, self.transform(dslr_image)
Esempio n. 5
0
parse.add_argument("-in_nc", type=int, default=3)
parse.add_argument("-dataset", type=str, default="AIM2020_ISP_validation_raw")
config = parse.parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
transform = transforms.ToTensor()
model = Raw2Rgb(input_nc=config.in_nc).to(device)
model.eval()
model.load_state_dict(torch.load(config.weights))
model.half()
raw_path = config.dataset
total_time = 0
count = 0
for path in os.listdir(raw_path):
    raw_image = np.asarray(imageio.imread(os.path.join(raw_path, path)))
    if config.in_nc == 4:
        raw_image = pack_raw(raw_image).astype(np.float32) / (4 * 255)
    else:
        raw_image = pack_raw_v2(raw_image).astype(np.float32) / (4 * 255)
    raw_image = torch.tensor(raw_image)
    raw_image = raw_image.unsqueeze(0).to(device).half()

    with torch.no_grad():
        start = time.time()
        img_hat = model(raw_image)
        torch.cuda.synchronize()
        stamp = time.time() - start
        print("process %s time:%f" % (path, stamp), img_hat.shape)
        total_time += stamp
        count += 1
        torchvision.utils.save_image(img_hat,
                                     "raw2rgb/test/" + os.path.basename(path))
Esempio n. 6
0
    def __init__(self,
                 t_ids,
                 t_paths,
                 gt_paths,
                 patch_size=512,
                 transforms=None):
        super(LearningToSeeInTheDarkDataset, self).__init__()

        # We only look at 00 pictures
        self.t_ids = np.unique(t_ids)

        self.t_paths = t_paths
        self.gt_paths = gt_paths

        self.gt_images = np.array([None] * 6000)
        #self.gt_images
        self.t_images = {}
        self.t_images['100'] = np.array([None] * len(self.t_ids))
        #self.t_images['100'][:] = None
        self.t_images['250'] = np.array([None] * len(self.t_ids))
        #self.t_images['250'][:] = None
        self.t_images['300'] = np.array([None] * len(self.t_ids))
        #self.t_images['300'][:] = None

        print("Loading data into memory", file=sys.stderr, flush=True)

        for index, t_id in enumerate(self.t_ids):
            print(t_id)
            t_files = glob.glob(self.t_paths + '%05d_00*.ARW' % t_id)
            gt_files = glob.glob(self.gt_paths + '%05d_00*.ARW' % t_id)

            gt_path = gt_files[0]
            _, gt_fn = os.path.split(gt_path)
            gt_exposure = float(gt_fn[9:-5])

            for t_path in t_files:
                _, t_fn = os.path.split(t_path)
                t_exposure = float(t_fn[9:-5])

                ratio = min(gt_exposure / t_exposure, 300)
                ratio_key = str(ratio)[0:3]

                t_raw = rawpy.imread(t_path)
                self.t_images[ratio_key][index] = np.expand_dims(
                    pack_raw(t_raw), axis=0) * ratio

            gt_raw = rawpy.imread(gt_path)
            im = gt_raw.postprocess(use_camera_wb=True,
                                    half_size=False,
                                    no_auto_bright=True,
                                    output_bps=16)
            self.gt_images[index] = np.expand_dims(np.float32(im / 65535.0),
                                                   axis=0)

            if index % 10 == 0:
                print("Loaded %d ids " % index, file=sys.stderr, flush=True)

        print("Completed loading data into memory",
              file=sys.stderr,
              flush=True)

        self.patch_size = patch_size
        self.transforms = transforms
Esempio n. 7
0
            in_files = glob.glob(input_dir + '%05d_00*.ARW'%test_id)
            for k in range(len(in_files)):
                in_path = in_files[k]
                _, in_fn = os.path.split(in_path)
                print(in_fn)
                gt_files = glob.glob(gt_dir + '%05d_00*.ARW'%test_id) 
                gt_path = gt_files[0]
                _, gt_fn = os.path.split(gt_path)
                in_exposure =  float(in_fn[9:-5])
                gt_exposure =  float(gt_fn[9:-5])
                ratio = min(gt_exposure/in_exposure,300)

                raw = rawpy.imread(in_path)
                im = raw.raw_image_visible.astype(np.float32) 
                im = im[:1024, :1024]
                input_full = np.expand_dims(pack_raw(im),axis=0) *ratio

                im = raw.postprocess(use_camera_wb=True, half_size=False, no_auto_bright=True, output_bps=16)
                im = im[:1024, :1024]
                scale_full = np.expand_dims(np.float32(im/65535.0),axis = 0)	

                gt_raw = rawpy.imread(gt_path)
                im = gt_raw.postprocess(use_camera_wb=True, half_size=False, no_auto_bright=True, output_bps=16)
                im = im[:1024, :1024]
                gt_full = np.expand_dims(np.float32(im/65535.0),axis = 0)

                input_full = np.minimum(input_full,1.0)

                in_img = torch.from_numpy(input_full).permute(0,3,1,2).to(device)
                out_img = model(in_img)
                output = out_img.permute(0, 2, 3, 1).cpu().data.numpy()
Esempio n. 8
0
def load_input_output(idx, nb, ps=512):
	## file path for training id.
	train_id = train_ids[idx]
	in_files = glob.glob(input_dir + '%05d_00*.ARW' % train_id)
	in_path = in_files[np.random.random_integers(0, len(in_files) - 1)]
	in_fn = os.path.basename(in_path)
	
	## file paths for the burst and exposure ratio.
	in_paths, complete = utils.get_burst_paths(in_path, max_burst)
	gt_files = glob.glob(gt_dir + '%05d_00*.ARW' % train_id)
	gt_path = gt_files[0]
	gt_fn = os.path.basename(gt_path)
	in_exposure = float(in_fn[9:-5])
	gt_exposure = float(gt_fn[9:-5])
	ratio = min(gt_exposure / in_exposure, 300)

	## read burst images
	if input_images[0][str(ratio)[0:3]][idx] is None:
		for k in range(len(in_paths)):
			in_path = in_paths[k]
			if os.path.isfile(in_path):
				raw = rawpy.imread(in_path)
				raw = utils.pack_raw(raw)*ratio
				if train_coarse == True:
					raw = utils.resize(raw, r=2)
				raw = np.expand_dims(raw, 0)
				raw = np.minimum(raw, 1.0)
				input_images[k][str(ratio)[0:3]][idx] = raw

		## read gt.
		gt_raw = rawpy.imread(gt_path)
		im = gt_raw.postprocess(use_camera_wb=True, half_size=False, no_auto_bright=True, output_bps=16)
		im = np.float32(im/65535.0)
		raw_im = utils.pack_raw(gt_raw)
		if train_coarse == True:
			im = utils.resize(im, r=2)
			raw_im = utils.resize(raw_im, r=2)

		im = np.expand_dims(im, axis=0)
		raw_im = np.expand_dims(raw_im, 0)
		im = np.minimum(im, 1.0)
		raw_im = np.minimum(raw_im, 1.0)
		gt_images[idx] = im
		gt_image_raws[idx] = raw_im

	## get inputs and output
	gt_full = gt_images[idx]
	gt_full_raw = gt_image_raws[idx]
	input_patches = []
	for k in range(len(in_paths)):
		input_full = input_images[k][str(ratio)[0:3]][idx]
		input_patches.append(input_full)

	## preprocessing
	st = time.time()
	input_patches, gt_patch, gt_patch_raw = utils.crop_samples(input_patches, gt_full, gt_full_raw, ps=ps)
	input_patches, gt_patch, gt_patch_raw = utils.augment_samples(input_patches, gt_patch, gt_patch_raw)
	input_patches = utils.shuffle_samples(input_patches)
	input_patches_low = utils.resize_samples(input_patches)
	
	if train_coarse == False:
		gt_patch_raw = np.expand_dims(utils.resize(gt_patch_raw[0, :, :, :], r=2), 0)
	
	return input_patches[:nb, :,:,:], input_patches_low[:nb, :,:,:], gt_patch, gt_patch_raw,  complete
Esempio n. 9
0
        in_path = in_files[k]
        in_paths, complete = utils.get_burst_paths(in_path, n_burst=n_burst)
        in_fn = os.path.basename(in_path)
        gt_files = glob.glob(gt_dir + '%05d_00*.ARW' % test_id)
        gt_path = gt_files[0]
        gt_fn = os.path.basename(gt_path)
        in_exposure = float(in_fn[9:-5])
        gt_exposure = float(gt_fn[9:-5])
        ratio = min(gt_exposure / in_exposure, 300)
        print(in_fn)

        ## Pack and multiply with exp. ratio.
        inputs = []
        for in_path in in_paths:
            raw = rawpy.imread(in_path)
            input_full = utils.pack_raw(raw) * ratio
            input_full = np.expand_dims(input_full, 0)
            input_full = np.minimum(input_full, 1.0)
            inputs.append(input_full)
        inputs = np.array(inputs)
        inputs_low = utils.resize_samples(inputs)

        ## Read gt.
        gt_raw = rawpy.imread(gt_path)
        gt_full = gt_raw.postprocess(use_camera_wb=True,
                                     half_size=False,
                                     no_auto_bright=True,
                                     output_bps=16)
        gt_full = np.expand_dims(np.float32(gt_full / 65535.0), axis=0)
        gt_full_raw = np.expand_dims(utils.pack_raw(gt_raw), 0)
Esempio n. 10
0
    def __getitem__(self, ind):
        # Get the path from image id
        train_id = self.train_ids[ind]
        train_id = 2
        #         train_id = 00001_00_10s.ARW
        in_files = glob.glob(input_dir + '%05d_00*.ARW' % train_id)
        #         print(in_files)

        in_path = in_files[np.random.random_integers(0, len(in_files) - 1)]
        _, in_fn = os.path.split(in_path)

        gt_files = glob.glob(gt_dir + '%05d_00*.ARW' % train_id)
        gt_path = gt_files[0]
        #         print(in_path, gt_path)
        _, gt_fn = os.path.split(gt_path)
        in_exposure = float(in_fn[9:-5])
        gt_exposure = float(gt_fn[9:-5])
        ratio = min(gt_exposure / in_exposure, 300)

        # Read raw image
        if self.input_images[str(ratio)[0:3]][ind] is None:
            raw = rawpy.imread(in_path)
            self.input_images[str(ratio)[0:3]][ind] = np.expand_dims(
                pack_raw(raw), axis=0) * ratio

            gt_raw = rawpy.imread(gt_path)
            im = gt_raw.postprocess(use_camera_wb=True,
                                    half_size=False,
                                    no_auto_bright=True,
                                    output_bps=16)
            self.gt_images[ind] = np.expand_dims(np.float32(im / 65535.0),
                                                 axis=0)

        # Crop
        H = self.input_images[str(ratio)[0:3]][ind].shape[1]
        W = self.input_images[str(ratio)[0:3]][ind].shape[2]

        xx = W // 4
        yy = H // 2
        input_patch = self.input_images[str(ratio)[0:3]][ind][:, yy:yy + ps,
                                                              xx:xx + ps, :]
        gt_patch = self.gt_images[ind][:, yy * 2:yy * 2 + ps * 2,
                                       xx * 2:xx * 2 + ps * 2, :]

        # Random flip or transpose
        if np.random.randint(2, size=1)[0] == 1:
            input_patch = np.flip(input_patch, axis=1)
            gt_patch = np.flip(gt_patch, axis=1)
        if np.random.randint(2, size=1)[0] == 1:
            input_patch = np.flip(input_patch, axis=0)
            gt_patch = np.flip(gt_patch, axis=0)
        if np.random.randint(2, size=1)[0] == 1:
            input_patch = np.transpose(input_patch, (0, 2, 1, 3))
            gt_patch = np.transpose(gt_patch, (0, 2, 1, 3))

        # Clip the images
        input_patch = np.minimum(input_patch, 1.0)
        gt_patch = np.maximum(gt_patch, 0.0)

        # Place onto device and torch it
        in_img = torch.from_numpy(input_patch).permute(0, 3, 1, 2)
        gt_img = torch.from_numpy(gt_patch).permute(0, 3, 1, 2)

        return in_img, gt_img, train_id, ratio